Tagged: Chemotherapy

Biomarkers May Predict Neoadjuvant Chemosensitivity in Bladder Cancer

In a new study, researchers aimed to identify and validate predictive biomarkers of response to neoadjuvant chemotherapy (NAC) in patients with muscle-invasive bladder cancer (MIBC).

Biomarkers May Predict Neoadjuvant Chemosensitivity in Bladder Cancer
Listen to an audio version of this article

Neoadjuvant chemotherapy (NAC) is a type of cancer treatment involving the administration of chemotherapy drugs before surgery. The goal of NAC is to shrink the tumor(s) in order to make it/them easier to remove during surgery and to decrease the chance of cancer recurrence after treatment. NAC is typically well tolerated by patients and has been shown to improve outcomes in patients with bladder cancer.

Predictive biomarkers are being increasingly used in oncology to identify patients who are likely to respond to chemotherapy. In the past, the decision to administer chemotherapy was based on tumor type and stage. However, it is now understood that there is considerable heterogeneity within these groups, and that not all patients will respond to the same treatment. Predictive biomarkers can help to overcome this challenge by identifying those patients who are most likely to benefit from chemotherapy.

There are a number of different types of predictive biomarkers, which can be divided into two broad categories: tumor biomarkers and host biomarkers. Tumor biomarkers are usually specific to the tumor type and can include markers of cell proliferation and DNA repair. Host biomarkers are usually found in the blood or other bodily fluids and can include markers of inflammation, immune function and metabolism. The use of predictive biomarkers has the potential to improve the efficacy of chemotherapy and reduce toxicity by avoiding its use in patients who are unlikely to benefit.

The Study

In a new study, researchers Neal Murphy, Andrew J. Shih, Paras Shah, Oksana Yaskiv, Houman Khalili, Anthony Liew, Annette T. Lee, and Xin-Hua Zhu from Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Northwell Health Cancer Institute, Feinstein Institutes for Medical Research, and Mayo Clinic aimed to develop and validate a predictive biomarker panel for response to NAC in patients with muscle-invasive bladder cancer (MIBC). Their research paper was published on November 2, 2022, in Oncotarget’s Volume 13, entitled, “Predictive molecular biomarkers for determining neoadjuvant chemosensitivity in muscle invasive bladder cancer.”

“The NAC non-responders suffer from unnecessary adverse effects and a delay in time to cystectomy leading to worse overall survival [9, 10]. Subsequently, there remains a critical need to understand the molecular biology behind NAC responsiveness, in order to better tailor individual NAC therapy.”

The purpose of this research was to “develop a molecular signature that can identify MIBC NAC responders (R) and non-responders (NR) using a cohort of known NAC response phenotypes, and better understand differences in molecular pathways and subtype classifications between NAC R and NR.” Researchers identified a total of 26 patients with known NAC response for inclusion in this study. These patients were assigned at random to either the discovery or validation cohort. The discovery cohort consisted of seven NAC responders and 11 non-responders. The validation cohort consisted of three responders and five non-responders.

Transurethral resection of bladder tumor (TURBT) specimens from the Northwell Health pathology department were received as formalin-fixed, paraffin-embedded (FFPE) tissue blocks. Pathologic response was determined at the time of cystectomy. Messenger RNA (mRNA) and microRNA (miRNA) from the FFPE blocks were sequenced using RNAseq and qPCR, respectively.

“To our knowledge, our study is the first to use combined differential mRNA and miRNA expression in MIBC to identify a NAC response signature.”

The Results

“We report significant gene sets associated with NAC response phenotype, as well as three multigene and miRNA signatures generated by CCA that can be used to potentially classify NAC response.”

In the discovery cohort, the researchers found that 2309 genes were differentially expressed between the NAC responders and non-responders. In the validation cohort, 602 genes and 13 miRNA were differentially expressed. Canonical correlation (CC) analysis found that three CCs (CC13: nucleoside triphosphate metabolic process; CC16: cell cycle and cellular response to DNA damage; and CC17: DNA packaging complex) were differentiated in the discovery and validation datasets. As far as MIBC subtypes, the MD Anderson p53-like subtype, CIT MC4 subtype and Consensus Class stroma-rich subtype had the strongest correlation with a non-responder phenotype. There were no subtypes that had strong correlations with the responder phenotype.

“In conclusion, our results identify molecular signatures that can be used to differentiate MIBC NAC responders versus non-responders. We have presented the salient molecular pathways and relevant genes, including mitochondrial response gene expression (MRPS12, MRPS34, MRPS28, MRPS14, and MRPS2), DNA replication initiation, and DNA unwinding and DNA damage (MCM2-3, MCM5-6 and XAP , ELK4, and FOXA3) that can be further analyzed to better understand NAC response. The above mentioned genes derived from their respective three pathways may be selected as part of a NAC response biomarker panel. In addition, we have highlighted the utility of molecular subtyping in relation to NAC response. If validated in a larger cohort, these findings may help deliver chemotherapy to those patients most likely to respond.”

Conclusion

Neoadjuvant chemotherapy is a promising treatment option for muscle-invasive bladder cancer patients, however, there is a class of patients who do not respond to chemotherapy. The results of this study implicate several different types of biomarkers that may be associated with chemosensitivity in MIBC patients. Further research is needed to validate these findings. Ultimately, if validated, these biomarkers could help to spare non-responders from side effects associated with ineffective and unnecessary chemotherapy.

“Our results identify molecular signatures that can be used to differentiate MIBC NAC R versus NR, salient molecular pathway differences, and highlight the utility of molecular subtyping in relation to NAC response.”

Click here to read the full research paper published by Oncotarget

ONCOTARGET VIDEOS: YouTube | LabTube | Oncotarget.com

Oncotarget is an open-access journal that publishes primarily oncology-focused research papers in a continuous publishing format. These papers are available at no cost to readers on Oncotarget.com. Open-access journals have the power to benefit humanity from the inside out by rapidly disseminating information that may be freely shared with researchers, colleagues, family, and friends around the world.

For media inquiries, please contact media@impactjournals.com.

Synergy of HDACi, PARPi and Chemotherapeutics Against Blood Cancer

Researchers investigated the efficacy of HDAC inhibitors in combination with PARP inhibitors and chemotherapeutic drugs in multiple blood cancer cell lines.

Synergy of HDACi, PARPi and Chemotherapeutics Against Blood Cancer
Listen to an audio version of this article

Chromatin constitutes chromosomes in eukaryotic cells and comprises DNA and proteins. Chromosomes produce proteins and enzymes that are essential for cellular function and maintenance, including DNA repair. A critical process for DNA repair is poly(ADP-ribosyl)ation, or PARylation.

PARylation is triggered by poly(ADP ribose) polymerase (PARP) enzymes. When DNA becomes damaged, PARP enzymes bind to the damaged location in the cell. In cancer cells, however, this natural process can be counterproductive in respect to cancer treatment. PARylation can produce DNA repair mechanisms in cancer cells that can lead to cell death evasion and even drug resistance. Inhibiting PARylation may be a viable therapeutic strategy for cancer treatment.

HDAC Inhibitors

Histones, the main proteins that constitute chromatin, undergo post-translational modifications that regulate gene expression. Histone acetylation is an important epigenetic process that affects gene expression by relaxing the chromatin structure, making chromatin remodeling more feasible. Histone deacetylases (HDACs) are enzymes that can have the opposite effect. Histone deacetylation makes the chromatin more compact and difficult to remodel. The overexpression of HDAC has also been associated with tumorigenesis. Histone deacetylase inhibitors (HDACi) are a class of therapeutics that have shown promise in the treatment of hematologic malignancies (blood cancer) and solid tumors.

“Overexpression of HDACs has been associated with tumorigenesis by down-regulation of tumor suppressor genes [3, 4]; hence, HDAC inhibitors (HDACi) including vorinostat (SAHA), romidepsin (Rom), panobinostat (Pano) and belinostat have been approved by the United States Food and Drug Administration for the treatment of hematologic and other malignancies [5]. These inhibitors restore appropriate gene expression, resulting in induction of cell differentiation, cell cycle arrest and apoptosis [6].”

The Study

In a new study, researchers Benigno C. Valdez, Yago Nieto, Bin Yuan, David Murray, and Borje S. Andersson from the Department of Stem Cell Transplantation and Cellular Therapy at the University of Texas MD Anderson Cancer Center and the Cross Cancer Institute’s Department of Experimental Oncology at the University of Alberta investigate the efficacy of HDACi in combination with PARP inhibitors (PARPi) and chemotherapeutic drugs to treat hematologic cancer. On October 14, 2022, their research paper was published in Volume 13 of Oncotarget, entitled, “HDAC inhibitors suppress protein poly(ADP-ribosyl)ation and DNA repair protein levels and phosphorylation status in hematologic cancer cells: implications for their use in combination with PARP inhibitors and chemotherapeutic drugs.”

“Despite their preclinical efficacy, HDACi do not seem to be clinically highly effective as monotherapy, and potentially more effective anti-tumor activity is observed when they are combined with other anti-cancer drugs [79].”

Studies on the interactions of HDACi with PARPi in cancers of the blood are limited, especially when combined with chemotherapeutic agents. The researchers used a panel of hematologic cancer cell lines (acute myeloid leukemia, T-cell acute lymphoblastic leukemia, chronic myeloid leukemia, and multiple myeloma) and patient-derived cell samples to study the effect of HDACi (including SAHA (Vorinostat), panobinostat (Pano), romidepsin (Rom) and trichostatin A (TSA)) on PARylation. In addition, the team looked at the efficacy of HDACi combined with PARPi, including Olaparib (Ola) and niraparib (Npb), and with chemotherapeutic agents gemcitabine (Gem), busulfan (Bu) and melphalan (Mel).

Results

The researchers found that hematologic cancer cell lines and patient-derived cell samples exposed to various HDACi resulted in a significant caspase-independent inhibition of protein PARylation. HDACi-mediated inhibition of protein PARylation was mainly catalyzed by PARP1. These findings suggest that HDACi could potentially be used in combination with PARP inhibitors and chemotherapeutic drugs to treat blood cancers.

“Our results indicate that the anti-tumor efficacy of HDACi is partly due to down-regulation of PARylation, which negatively affects the status of DNA repair proteins. This repair inhibition, combined with the high levels of oxidative and DNA replication stress characteristic of cancer cells, could have conferred these hematologic cancer cells not only with a high sensitivity to HDACi but also with a heightened dependence on PARP and therefore with extreme sensitivity to combined HDACi/PARPi treatment and, by extension, to their combination with conventional DNA-damaging chemotherapeutic agents. The observed synergism of these drugs could have a major significance in improving treatment of these cancers.”

Conclusion

HDACi drugs can inhibit PARylation. The combination of HDACi-mediated inhibition of PARylation was complemented by PARPi and chemotherapeutic agents in multiple blood cancer cell lines. The efficacy of this combined treatment was superior to that of any single agent, supporting the further clinical development of HDACi in cancer therapy. These findings could potentially be used to improve the treatment of hematologic cancers.

“In conclusion, our results provide a molecular explanation for the HDACi-mediated inhibition of DNA repair in hematologic cancer cells and support the combinatorial application of HDACi, PARPi and chemotherapeutic agents for the treatment of hematologic malignancies.”

Click here to read the full research paper published by Oncotarget

ONCOTARGET VIDEOS: YouTube | LabTube | Oncotarget.com

Oncotarget is an open-access journal that publishes primarily oncology-focused research papers in a continuous publishing format. These papers are available at no cost to readers on Oncotarget.com. Open-access journals have the power to benefit humanity from the inside out by rapidly disseminating information that may be freely shared with researchers, colleagues, family, and friends around the world.

For media inquiries, please contact media@impactjournals.com.

Trending With Impact: Are NOTCH1 Variants Prognostic in Breast Cancer?

Researchers determined the prognostic ability of three NOTCH1 gene variants by incorporating them into two non-tumorigenic breast cell lines.

Breast cancer illustration
Breast cancer illustration

The Trending With Impact series highlights Oncotarget publications attracting higher visibility among readers around the world online, in the news, and on social media—beyond normal readership levels. Look for future science news about the latest trending publications here, and at Oncotarget.com.

Listen to an audio version of this article

The genetic changes that occur within the protein-coding gene NOTCH1 have not yet been fully studied or classified. Despite a lack in research, previous studies have suggested that NOTCH1 may be a potential target for novel cancer therapies, particularly against triple-negative breast cancer (TNBC). NOTCH1 variants in TNBC tend to cluster in the PEST region and have previously been linked to gamma secretase inhibitor (GSI) sensitivity and chemotherapy resistance.

“Furthermore, TNBC patients with increased Notch1 expression have demonstrated increased aggressive phenotypes and lower median overall survival [25].”

Since TNBC is well-known for a lack of actionable therapeutic targets, aggressive phenotypes and poor prognoses, there is an important need to develop new targeted therapies—as well as predictive markers for those therapies. Researchers from The Johns Hopkins University School of MedicineVanderbilt University Medical Center and The Vanderbilt-Ingram Cancer Center experimented in vitro with NOTCH1 variants and their ability to predict TNBC responsiveness to GSIs and standard of care chemotherapies. Their trending research paper was published by Oncotarget on February 16, 2022, and entitled, “NOTCH1 PEST domain variants are responsive to standard of care treatments despite distinct transformative properties in a breast cancer model.”

The Study

The researchers used three publicly available tumor-associated variant databases to identify three NOTCH1 variants that are commonly mutated in breast cancers; two variants were located in the A2441 site on NOTCH1 and the third variant was located in the PEST region of NOTCH1. To investigate the role of these NOTCH1 variants in TNBC in vitro, the team cultured two non-tumorigenic breast epithelial cell lines. Uniquely, they used an adeno-associated virus (AAV) vector to isogenically incorporate the NOTCH1 variants into the two cell lines. The researchers also developed a wildtype vector for the control arm of the study.

“In addition to the NOTCH1 variants, a targeted wildtype (TWT), which underwent the same gene targeting mechanism with a wildtype vector, was generated for both parental cell lines to act as a control.”

A standard growth factor supplemented media was used to determine if the NOTCH1 variants caused increased proliferation in the non-tumorigenic cell lines. Compared to the controls, no significant change in proliferation was observed. They also removed the epidermal growth factor (EGF) from the cells to determine if these NOTCH1 variants impart a ligand-independent proliferative advantage. In both cell lines, their results demonstrated that the A2441 variants exhibited EGF-independent growth, while the PEST NOTCH1 variant did not. Immunoblot analyses suggested that, in the absence of EGF, the A2441 NOTCH1 variants activated the MAPK pathway. These EGF-independent NOTCH1 variants (not the PEST NOTCH1 variant) conferred an invasive growth phenotype, increased migratory potential, had dysregulated 3D morphology, and significantly altered gene expression in cancer pathway genes.

Next, to measure the responsiveness and susceptibility of these variants to therapeutic agents, the cells were treated with six chemotherapeutic agents and nirogacestat—a GSI drug. Interestingly, none of the three variants demonstrated significantly different responses to the treatments when compared to one another. Furthermore, all of the variants showed sensitivity to these standard therapies used against TNBC. This suggests that these specific genetic changes within NOTCH do not have a large impact on tumor behavior and may not be useful as predictive markers for therapy response.

Conclusion

“Taken together, these data suggest that the oncogenic potential of NOTCH1 PEST domain variants depends on both variant type and amino acid location.”

Contrary to previous studies, the researchers found that the three NOTCH variants did not demonstrate significantly different responses to the GSI or the chemotherapies despite demonstrating distinct phenotypes. The lack of differential responses demonstrated by the variants in this study suggests that there is high variability among NOTCH1 variants. The prognostic potential of NOTCH1 may be dependent on the type of variant and its location, but more expansive research is necessary.

“Future studies involving meticulous characterization of an expansive panel of NOTCH1 variants in a similar model may provide mechanistic insight and predictive and/or prognostic value that is both variant type and site dependent.”

Click here to read the full research paper published by Oncotarget.

ONCOTARGET VIDEOS: YouTube | LabTube | Oncotarget.com

Oncotarget is a unique platform designed to house scientific studies in a journal format that is available for anyone to read without a paywall making access more difficult. This means information that has the potential to benefit our societies from the inside out can be shared with friends, neighbors, colleagues, and other researchers, far and wide.

For media inquiries, please contact media@impactjournals.com.

Scientific Integrity

What Causes Chemo Brain?

​​Researchers investigated potential therapeutic culprits of “chemo brain” in a trending new paper published by Oncotarget.

What Causes Chemo Brain?

The Trending With Impact series highlights Oncotarget publications attracting higher visibility among readers around the world online, in the news, and on social media—beyond normal readership levels. Look for future science news about the latest trending publications here, and at Oncotarget.com.

Listen to an audio version of this article

A type of mental fog—known as “chemo brain”—is widely experienced by patients who have undergone cancer treatment. Cancer research institutions define chemo brain as impaired cognition, including cloudiness, memory loss and/or lack of concentration, that occurs before, during and/or after cancer treatment. This condition can negatively impact quality of life in a significant way. Chemo brain not only affects recovering individuals but also their loved ones, who often must take on additional caregiving responsibilities. Despite the name, chemotherapeutic drugs may not be the only treatments responsible for chemo brain. 

A chemotherapy protective drug called amifostine is commonly used in patients and paired with chemotherapeutic agents. Amifostine functions to protect healthy cells from DNA double strand breaks (DSBs) induced by chemotherapy. Another commonly prescribed cancer treatment is called etoposide, which is a chemotherapeutic drug that also targets DSBs. Etoposide, on the other hand, functions to increase DSBs in cancer cells. Recently, researchers have suggested that DSBs could play a role in learning, memory and immediate early gene (IEG) expression. The activity of IEGs can be used to identify neural circuits involved in learning and memory processes.

“Despite their wide clinical use, there is little information about how amifostine and etoposide affect learning and memory.”

THE STUDY

Researchers from Oregon Health and Science University conducted a novel study to observe the isolated effects of these common DSB-altering agents on learning, memory and IEG expression. Systemic injections of amifostine and etoposide were examined in both male and female mice. Their research paper was published by Oncotarget in January of 2022, and entitled, “Common cancer treatments targeting DNA double strand breaks affect long-term memory and relate to immediate early gene expression in a sex-dependent manner.”

“In this study, we investigated the effects of amifostine and etoposide on hippocampus-dependent and -independent fear conditioning [23] and IEG expression in male and female C57Bl/6J mice.”

Male and female mice were systemically dosed with either saline or the one of the cancer treatments, and then trained in fear conditioning. Markers of contextual and cued memory were tested 24 hours and two weeks post-training. The study consisted of four total experiments. The first experiment examined the effects of pre-training cancer treatment injections on long-term memory. The second experiment examined the effects of post-training cancer treatment injections on long-term memory. The third experiment examined the effects of pre-training injections on cFos and Nicotinamide adenine dinucleotide phosphate (NADPH). (Increasing and inhibiting the activity of NADPH oxidase impairs learning and memory.) The fourth experiment examined the effects of pre-training cancer treatment injections on DSBs.

“Hippocampal cFos and ΔFosB are essential for contextual learning and hippocampal synaptic plasticity [1213].”

RESULTS

The researchers found that pre- and post-training injections of amifostine at 107 mg/kg increased long-term contextual, but not cued, freezing in male mice. Amifostine decreased hippocampal DSBs, although it did not not change cFos levels in either male or female mice. The researchers observed that post-training injections of etoposide led to long-term decreases in both contextual and cued freezing among female mice. Etoposide decreased hippocampal NADPH in females and hippocampal DSBs in both sexes. Overall, etoposide decreased hippocampal γH2Ax (a DSB repair marker), hippocampal NADPH and cortical cFos in a sex-dependent manner.

“Post-training injections of amifostine affected long-term contextual fear memory; etoposide affected contextual and cued fear memory.”

CONCLUSION

“Our results suggest that amifostine and etoposide have distinct effects on learning and memory dependent on sex and timing of administration.”

The researchers assessed the effects of these DSB-altering agents and found results suggesting that they have a direct impact on learning and memory. Their impacts varied on the basis of sex and timing of administration before or after training. The researchers suggest that future studies examine these effects on specific brain regions to clarify the underlying mechanisms driving learning and memory changes. 

“Newer analogs of these drugs, such as PrC-210 [45], might reduce these side effects and improve patients’ quality of life. Future investigations are warranted to determine the role of DSBs in encoding, retrieval, and reconsolidation, and further our understanding of learning and memory processes in health and disease.”

Click here to read the full research paper published by Oncotarget.

ONCOTARGET VIDEOS: YouTube | LabTube | Oncotarget.com

Oncotarget is a unique platform designed to house scientific studies in a journal format that is available for anyone to read without a paywall making access more difficult. This means information that has the potential to benefit our societies from the inside out can be shared with friends, neighbors, colleagues, and other researchers, far and wide.

For media inquiries, please contact media@impactjournals.com.

Scientific Integrity

Could Metformin and Rapamycin Replace Maintenance Chemotherapy?

Researchers explored metformin with or without rapamycin as maintenance therapy in patients with metastatic pancreatic adenocarcinoma.

Malignant fluid cytology; Malignant cells of adenocarcinoma may spread to fluid of pleural or peritoneal cavity in cancer from the breast, lung, colon, pancreas, ovary, endometrium or other sites.
Malignant cells of adenocarcinoma

Maintenance chemotherapy has previously been recommended for patients with metastatic pancreatic ductal adenocarcinoma (mPDA)—as PDA is an aggressive cancer at all stages, and treatment options are limited for later-stage mPDA. However, maintenance chemotherapy regimens often lead to toxicity and are not viable long-term options. Therefore, researchers are exploring alternative maintenance therapies for mPDA patients. In preclinical studies, the therapeutic combination of metformin and rapamycin demonstrated a potential synergy of anti-tumor activity in PDA.

“A synergistic effect of the combination of metformin with rapamycin was suggested by preclinical studies demonstrating enhanced inhibition of mTOR in a pancreatic cancer cell line and better growth inhibition of pancreatic cancer cells in a xenograft tumor model with the combination than either agent alone [21].”

Metformin is an antihyperglycemic drug that is frequently prescribed for patients with diabetes to help control blood sugar levels. Rapamycin is an immunosuppressive drug that has historically been prescribed to prevent organ rejection in kidney transplant patients. (Today, rapamycin is also being considered for its potential use in anti-aging and longevity interventions.) In animals, metformin and rapamycin both inhibit the major biological regulator of growth, named the mammalian target of rapamycin (mTOR). mTOR is thought to be a main driver of many (if not all) aging-related diseases, including cancers such as PDA

“Mechanistic/mammalian target of rapamycin (mTOR) is a serine/threonine protein kinase which acts as a signaling node downstream of several oncogenic pathways including KRAS/MEK/ERK and PI3K/Akt, both of which are thought to be relevant drivers in a majority of PDAs [69].” 

The Study

Given its promising potential, researchers—from Johns Hopkins University School of MedicineVirginia Piper Cancer Center at HonorHealthTranslational Genomics Research Institute (TGen), and Shanghai Jiao Tong University School of Medicine—conducted a study exploring metformin, plus or minus rapamycin, in patients with metastatic PDA. Their priority research paper was published by Oncotarget in 2020, and entitled, “An exploratory study of metformin with or without rapamycin as maintenance therapy after induction chemotherapy in patients with metastatic pancreatic adenocarcinoma”.

A total of 22 unselected patients with mPDA were included in this randomized open-label phase 1b study between June 2014 and December 2017. Patients were at least 18 years of age and had previously been treated with chemotherapy for mPDA. At the beginning of the study, patients had either stable mPDA or responding mPDA for at least six months after induction chemotherapy. Half of the patients were randomly assigned to study Arm A, and the other 11 patients were assigned to study Arm B. Of note, the average age of the participants in Arm B was older (52–72; 66) than the participants in Arm A (34-73; 58). Otherwise, baseline characteristics between the study groups were relatively well-balanced. 

Participants in study Arm A were assigned to take 850 milligrams of metformin orally, two times per day, for at least 12 months. Participants in study Arm B were assigned to take metformin and four milligrams of rapamycin once per day, for at least 12 months. The researchers conducted PET/CT scans, immunologic and metabolic analyses, statistical analysis, and continuously recorded and monitored for safety, patient tolerance, toxicity, and treatment-related adverse events.

“Treatment was continued until disease progression, intolerance of study treatments, or study closure, which occurred only after all remaining patients received a minimum of 12 months of treatment.”

Results and Conclusion

“In conclusion, the administration of metformin with or without rapamycin in patients with mPDA who achieve a response to chemotherapy is well-tolerated and was associated with better than expected overall survival in this study.”

The researchers observed “remarkably longer than expected” progression free survival and overall survival in this typically poor-prognosis population of patients. In this cohort, a low neutrophil-to-lymphocyte ratio and decreased fluorodeoxyglucose-avidity and/or decreased CA19-9 from baseline predicted improved outcomes among the long-term survivors. Overall, metformin and rapamycin were well-tolerated and their safety profiles were found to be comparable to previous reports. The researchers were forthcoming about limitations of their study—as their cohort was relatively small and the study was not powered to detect differences in clinical activity between the treatment arms.

“To this end, we identified several factors which may be used to select for patients with improved outcomes; however, whether good prognosis patients need any further treatment at all and whether poor prognosis patients will benefit from continued chemotherapy rather than a maintenance approach are not known and additional prospective studies are needed to answer these questions.”

Click here to read the full priority research paper, published by Oncotarget.

ONCOTARGET VIDEOS: YouTube | LabTube | Oncotarget.com

Oncotarget is a unique platform designed to house scientific studies in a journal format that is available for anyone to read without a paywall making access more difficult. This means information that has the potential to benefit our societies from the inside out can be shared with friends, neighbors, colleagues, and other researchers, far and wide.

For media inquiries, please contact media@impactjournals.com.

New Study: Vaccine Enhances Breast Cancer Treatment

Researchers conducted a study to examine the efficacy of adding the P10s-PADRE vaccine to chemotherapy treatments for patients with HR+/HER2− breast cancer.

Cancer vaccine
Listen to an audio version of this article

The most common type of breast cancer in the United States is HR+/HER2− breast cancer. Patients with HR+/HER2− breast cancer often face the threat of distant recurrence—long after the completion of their treatment. Previous studies have found that high levels of tumor infiltrating lymphocytes (TILs) were associated with improved outcomes and recurrence-free survival in patients with HR+/HER2− breast cancer. These studies and many others have prompted researchers to further develop and test cancer vaccines in an effort to elicit anti-tumor immune responses in these patients.

“Therefore, a rational combination therapy that enhances the immune-stimulatory properties of NAC [neoadjuvant chemotherapy], can provide long-term survival benefits for this patient population.”

Researchers from University of Arkansas for Medical SciencesUniversity of Texas SouthwesternHighlands Oncology Group, and Université Claude Bernard Lyon 1 conducted a new single-arm Phase Ib clinical trial. Early-stage HR+/HER2− breast cancer patients were treated with carbohydrate-mimetic peptides, the P10s-PADRE vaccine, in combination with chemotherapy treatments. Their paper was chosen as the cover of Oncotarget’s Volume 12, Issue 22, and entitled, “P10s-PADRE vaccine combined with neoadjuvant chemotherapy in ER-positive breast cancer patients induces humoral and cellular immune responses.”

“The main objective of our study was to determine an appropriate schedule to be used for adding the P10s-PADRE vaccine to cancer chemotherapy in the neoadjuvant setting considering the ability of the vaccine to elicit adequate antibody response.”

The Study

After meeting the study’s detailed inclusion/exclusion criteria, a total of 25 patients with HR+/HER2− breast cancer were selected to partake in this single-arm Phase Ib clinical trial. Patients were divided into five cohorts (five patients per cohort): A, B, C, D, and E. Each patient was treated with a combination of four therapies over the course of 22-25 weeks, including three doses of the peptide-based P10s-PADRE cancer vaccine, four doses of Cyclophosphamide (chemotherapy), four doses of Doxorubicin (chemotherapy) and four doses of Docetaxel (chemotherapy). Using a cohort-specific treatment schedule for the previously stated combination of therapies, the researchers assessed the feasibility, safety and immunogenicity achieved in each cohort and each patient.

Additionally, patients underwent surgery between weeks 26 and 33 (four to eight weeks after their last chemotherapy treatment). Each cohort also had a cohort-specific blood draw schedule—blood was drawn at eight different times in the 73-week time frame. Blood draws were used to conduct flow cytometry, measure the concentration of cytokines, natural killer (NK) cells and antibodies, and to determine the presence of anti-peptide antibody response and the percentage of TILs. The researchers observed that all five cohorts saw a significant reduction in tumor size.

“The data suggest that subjects enrolled in schedule C generated a more consistent and robust antibody response, therefore schedule C appears as the schedule of choice for future combination therapy.”

Their findings concluded that, in combination with chemotherapy, P10s-PADRE immunization in HR+/HER2− breast cancer patients induced “acceptable” antibody responses in study cohorts C and E. The treatment schedule in cohort C demonstrated the strongest antibody response by affecting the expression levels of NK-cell markers, stimulating the production of cytokines, T-cells and TILs. However, the researchers note that continued analysis of the blood samples collected could show serum antibodies may begin to appear later on in patients enrolled in the other treatment schedules.

Conclusion

“This Phase Ib clinical trial of the P10s-PADRE vaccine shows that immunization in combination with a standard-of-care NAC is feasible and well-tolerated. Combination therapy induces antibody response, stimulates activation of NK cells, and is associated with infiltration of T cells in tumor microenvironment. Randomized phase II trials focusing on treatment schedule C are needed to validate current findings and evaluate clinical efficacy.”

Click here to read the full research paper, published by Oncotarget.

YOU MAY ALSO LIKE: More Oncotarget Videos on LabTube

Oncotarget is a unique platform designed to house scientific studies in a journal format that is available for anyone to read—without a paywall making access more difficult. This means information that has the potential to benefit our societies from the inside out can be shared with friends, neighbors, colleagues, and other researchers, far and wide.

For media inquiries, please contact media@impactjournals.com.

Scientific Integrity

Trending With Impact: Low-Dose Chemo Inhibits Resistant Breast Cancer

In this trending in vitro study, researchers assessed the efficacy of low-dose 6-mercaptopurine and 5-azacitidine to inhibit high resistance triple-negative breast cancer cells.

Photomicrograph of a breast cancer (grade 3 invasive ductal carcinoma) with frequent mitoses (mitotic figures), including a large central atypical mitoses.
Photomicrograph of a breast cancer (grade 3 invasive ductal carcinoma) with frequent mitoses (mitotic figures), including a large central atypical mitoses.

The Trending with Impact series highlights Oncotarget publications attracting higher visibility among readers around the world online, in the news, and on social media—beyond normal readership levels. Look for future science news about the latest trending publications here, and at Oncotarget.com.

Listen to an audio version of this article

Triple-negative breast cancer (TNBC) accounts for 10-15% of all breast cancers. “Triple-negative” in this subtype of breast cancer cell refers to the lack of HER2 protein and estrogen and progesterone receptors. This means that TNBC cannot be treated with hormone inhibition and must be treated with conventional chemotherapy. In addition, many of these breast cancer cells can opportunistically switch between proliferation and quiescence—a difficult phenotype to treat. Patients diagnosed with this highly adaptable cancer frequently relapse and develop resistance to treatments.

In 2021, researchers from The University of Texas MD Anderson Cancer Center conducted a research study in hopes of developing a safe and effective therapeutic combination to treat resistant triple-negative breast cancer. Their paper, published in Oncotarget’s Volume 12, Issue 7, was entitled: “Inhibition of resistant triple-negative breast cancer cells with low-dose 6-mercaptopurine and 5-azacitidine.” 

The Study

“Evidence suggests that SUM149-metabolic adaptable (MA) cells are a suitable model of resistant human triple-negative breast cancer (TNBC) cells that can survive bottlenecks in the body, including therapeutic interventions, by opportunistically switching between quiescence and cell proliferation [578].”

In this in vitro study, researchers cultured three highly drug-resistant and metastatic progenitor-like TNBC cell lines with opportunistic switching between quiescence and proliferation. Researchers focused on designing a safe treatment that is effective in both low- and high-risk patients. The researchers note that it was critical to their study that the regimen is proven safe to administer to patients for early use in the minimal residual disease (MRD) stage after surgery, and before clinical metastasis is detected.

“For a potential therapy to be suitable at the MRD stage, it must be safe (an important criterion prior to clinical relapse) and disrupt heterogeneous progenitor-like cancer cells that evolve into clinical metastases.”

Two chemotherapy and immunosuppressive drugs (ribonucleoside analogues) were tested on the cell lines at low doses for the sake of viability in the MRD stage: 6-mercaptopurine (6-MP) and 5-azacitidine (5-AzaC). Both of these drugs have been clinically proven to be well-tolerated and to have drug-sensitizing, quiescence-stabilizing, and apoptosis-inducing effects in cancer cells.

“We chose 5-AzaC because it could complement 6-MP’s effects on the transcriptome and epigenome, and—as indicated by many Phase 1 clinical trials—5-AzaC is well tolerated [11].”

Results & Conclusion

“Our studies suggest that low-dose 6-MP, which is a purine analogue and very effective in maintaining remission in IBD [9], inhibits highly adaptable TNBC cells in our model, presumably by disrupting their transcriptome and epigenome.”

Researchers found that these low-dose therapeutics take several weeks to become effective. Despite the low dose, 6-MP (complimented by 5-AzaC) was capable of inhibiting highly adaptable TNBC cells. The researchers also point out that, based on decades of 6-MP’s use in patients with inflammatory bowel disease (IBD), this drug may be used regularly to modulate the immune system and prevent disease recurrence through its ability to inhibit chronic inflammation associated with advanced cancers.

“We suggest that low dose 6-MP and other drugs that would complement 6-MP’s action, such as 5-AzaC, could be suitable for preventing recurrence and metastasis in high-risk breast cancers. 6-MP could be taken lifelong if it is necessary for maintaining a long-term remission.”

Click here to read the full scientific study, published by Oncotarget.

YOU MAY ALSO LIKE: Latest Oncotarget Videos Hosted on LabTub TV

Oncotarget is a unique platform designed to house scientific studies in a journal format that is available for anyone to read—without a paywall making access more difficult. This means information that has the potential to benefit our societies from the inside out can be shared with friends, neighbors, colleagues, and other researchers, far and wide.

For media inquiries, please contact media@impactjournals.com.

Trending with Impact: Nimotuzumab Improves Non-HPV Oropharynx Cancers

Researchers perform a subgroup analysis study demonstrating positive results in patients with HPV-negative oropharyngeal cancers due to the addition of nimotuzumab while receiving cisplatin and radiation treatment.

An image depicting the nasopharynx, pharynx, and the oropharynx.
An image depicting the nasopharynx, pharynx, and the oropharynx.

The Trending with Impact series highlights Oncotarget publications attracting higher visibility among readers around the world online, in the news, and on social media—beyond normal readership levels. Look for future science news and articles about the latest trending publications here, and at Oncotarget.com.

Oral cancer in any part of the oropharynx (the back-third of the tongue, tonsils, soft palate, and back and sides of the throat) is called oropharyngeal cancer. Each year, oral cancer accounts for around 53,000 new patient diagnoses in the United States. However, the highest number of cases of oral cancer in the world are found in India, and this number is increasing.

“As opposed to HPV related oropharyngeal cancer, HPV negative oropharyngeal cancers have worse prognosis.”

Researchers from Tata Memorial Hospital and Tata Memorial Centre in Mumbai, India, previously reported that in a phase three randomized study of an epidermal growth factor receptor inhibitor medication and, called cetuximab, showed a trend towards improvement when used in patients with locally advanced head and neck cancers. Compared with results in other similar studies, they believe their results were likely due to a younger cohort of patients with predominantly HPV negative diseases.

“Taking this into consideration, we decided to perform a subgroup analysis of the HPV negative oropharyngeal cancer cohort, to study the absolute improvement in 2-year outcomes with the addition of nimotuzumab. We compared 2 year progression free survival (PFS), disease free survival (DFS), locoregional control (LRC) and overall survival (OS) between both arms.”

The Study

“HPV negative oropharyngeal cancer has unsatisfactory treatment outcomes and is a candidate for escalation of treatment. We wanted to determine whether the addition of nimotuzumab to cisplatin-radiation could improve outcomes in these poor-risk tumors.”

In this study, the researchers gathered 536 patients undergoing definitive chemoradiation for locally advanced head and neck cancers, with 269 having a primary tumor located in the oropharynx. Of these patients, 187 were p16 protein negative and were divided into two treatment arms: 91 in the cisplatin-radiotherapy (CRT) treatment arm and 97 in the nimotuzumab-cisplatin-radiotherapy (NCRT) treatment arm. Nimotuzumab is an antibody that binds to epidermal growth factor receptor IgG1 and a radiosensitizer.

The cohort consisted of only 21 females, therefore the participants were primarily male, with a median age of 54.5, 90% reported tobacco use, and 80% were in disease stage IV. Patients in the CRT treatment arm were given 30mg/m2 of cisplatin weekly, in addition to radiation therapy. In the NCRT treatment arm, in addition to radiation therapy, patients received 200 mg of nimotuzumab and 30 mg/m2 cisplatin weekly. 

Results

Researchers found that the HPV positive/negative interaction test using immunohistochemistry staining taken by each participant was a significant determinant in progression free survival, locoregional control, and overall survival, but not in disease free survival. They suggest this data shows that the addition of nimotuzumab has a differential patient impact on disease free survival with respect to HPV status.

In patients taking nimotuzumab, improvement in locoregional control was largely responsible for their improvement in progression free survival. On average, time to locoregional failure in the CRT treatment arm was 17.3 months, and in the NCRT treatment arm, it was 60.3 months. The team also found that the addition of nimotuzumab led to an 18.6% improvement in 2-year overall survival, jumping from 39.0% to 57.6%.

Figure 4: Restricted mean overall survival plots of both arms. arm = 0 represents the plot of the cisplatin radiotherapy arm while arm = 1 represents the plot of the Nimotuzumab-cisplatin radiotherapy arm.
Figure 4: Restricted mean overall survival plots of both arms. arm = 0 represents the plot of the cisplatin radiotherapy arm while arm = 1 represents the plot of the Nimotuzumab-cisplatin radiotherapy arm.

“Locoregional control, progression-free survival and overall survival were improved with the addition of nimotuzumab to cisplatin and radiation.”

Conclusion

“The addition of nimotuzumab to weekly cisplatin-radiation improves outcomes inclusive of OS in HPV negative oropharyngeal cancers.”

“The results of the current study clarify the importance of treatment intensification in HPV negative oropharyngeal cancers.”

Click here to read the full scientific study, published in Oncotarget.

Oncotarget is a unique platform designed to house scientific studies in a journal format that is available for anyone to read—without a paywall making access more difficult. This means information that has the potential to benefit our societies from the inside out can be shared with friends, neighbors, colleagues and other researchers, far and wide.

For media inquiries, please contact media@impactjournals.com.