Author: Oncotarget

Dr. Mikhail Blagosklonny on Rapamycin Longevity Series

Dr. Mikhail Blagosklonny joins “Master One Thing” host Krister Kauppi to discuss the impact of his rapamycin research and hyperfunciton theory of aging.

The world’s leading Rapamycin researcher, Dr. Mikhail Blagosklonny, has a long background in cancer research and one important discovery he made around 2000 was that Rapamycin slowed down senescent cancer cells in different ways. After that step-by-step, his interest in the longevity field increased and he developed the very interesting hyperfunction theory of aging.

He has made a huge contribution in moving the Rapamycin longevity field forward and his research papers have impacted many people. For example, the Rapamycin physician Alan Green who – thanks to these papers – took the decision in 2017 to start prescribing Rapamycin off label. Today, Alan Green has the biggest clinical experience in the area with more than 1,200 patients. A lot of other physicians have after that also taken these steps and one of those, for example, is physician Peter Attia.

Interview Table of Contents:

  • 02:32 Current situation and mission
  • 04:07 Why did Rapamycin not prevent his cancer?
  • 06:33 He develops a new type of cancer treatment
  • 08:32 Hyperfunction theory of age-related diseases
  • 10:38 mTOR drives age-related diseases
  • 13:00 Hyperfunction theory and the car analogy
  • 17:20 Difference between new and old version of hyperfunction theory
  • 19:58 Prediction based on hyperfunction theory
  • 21:38 Rapamycin seems to work at any age
  • 23:55 Rapamycin will not make you immortal
  • 26:21 Rapamycin delays lung cancer in mice
  • 27:44 Hyperfunction theory and hormesis
  • 29:13 Rapamycin combination with fasting or calorie restriction
  • 30:33 Rapamycin combination with Acarbose or low carb diet
  • 31:40 Rapamycin combination with exercise
  • 33:04 Exercise and longevity effect
  • 36:10 mTOR sweet spot
  • 38:44 Why do centenarians live a long life?
  • 40:36 Theory of accumulation of molecular damage
  • 44:04 Hyperfunction theory was initially rejected
  • 47:47 Rapamycin research that is missing
  • 51:44 Rapamycin and bacterial infection
  • 53:30 Rapamycin side effect on longevity dose regime
  • 55:50 Rapamycin and pseudo-diabetes
  • 58:51 Rapamycin combination of Acarbose or low carb diet
  • 1:00:09 Rapamycin and increase in lipids
  • 1:02:19 mTOR, mTORC1 and mTORC2
  • 1:05:22 Mikhail’s self-experimentation with Rapamycin
  • 1:10:41 Rapamycin and traditional medical care
  • 1:11:13 Rapamycin and unacceptable side effects
  • 1:14:26 Rapamycin and combinations to avoid
  • 1:16:55 Rapamycin and high protein intake
  • 1:18:08 Best time to start taking Rapamycin
  • 1:21:00 Does Rapamycin prevent cancer or not?
  • 1:23:52 Autophagy is a double-edged sword
  • 1:26:51 Important insight from his cancer
  • 1:28:38 Rapamycin rebound effect
  • 1:30:24 Difference between theory and practice
  • 1:32:45 Mikhail’s cancer and cancer treatment
  • 1:37:36 Rapamycin and danger

Dr. Blagosklonny’s Links:

Rapamycin resources:

Disclaimer from host Krister Kauppi:

The podcast is for general information and educational purposes only and is not medical advice for you or others. The use of information and materials linked to the podcast is at the users own risk. Always consult your physician with anything you do regarding your health or medical condition.

Oncotarget’s Top 10 Most-Viewed Papers in 2021

Read the 10 most-viewed oncology-focussed papers on in 2021.

Oncotarget's top 10 papers of 2021

Listen to an audio version of this post

#10: Metformin and berberine, two versatile drugs in treatment of common metabolic diseases

Authors: Haoran Wang, Chen Zhu, Ying Ying, Lingyu Luo, Deqiang Huang, and Zhijun Luo

Institutions: The First Hospital of Nanchang University, Nanchang University and Boston University School of Medicine

Quote: “Metformin has been used as a glucose lowering drug for several centuries and is now a first-line drug for type 2 diabetes mellitus (T2DM). Since the discovery that it activates AMP-activated protein kinase (AMPK) and reduces risk of cancer, metformin has drawn great attentions. Another drug, berberine, extracted from berberis vulgaris L. (root), was an ancient herbal medicine in treating diarrhea.”

#9: Cell fusion as a link between the SARS-CoV-2 spike protein, COVID-19 complications, and vaccine side effects

Author: Yuri Lazebnik

Institution: Lerna Consulting

Quote: “A distinctive feature of the SARS-CoV-2 spike protein is its ability to efficiently fuse cells, thus producing syncytia found in COVID-19 patients. This commentary proposes how this ability enables spike to cause COVID-19 complications as well as side effects of COVID-19 vaccines, and suggests how these effects can be prevented.”

#8: Physical activity and telomere length: Impact of aging and potential mechanisms of action

Authors: Nicole C. Arsenis, Tongjian You, Elisa F. Ogawa, Grant M. Tinsley, and Li Zuo

Institutions: University of Massachusetts Boston, Texas Tech University and The Ohio State University College of Medicine

Quote: “Based on the significance of telomere length in aging and the need to understand the potential association with physical activity, the purpose of this systematic review is to investigate whether physical activity and exercise influence telomere length and to discuss possible mechanisms of action.”

#7: Hedgehog signaling induces PD-L1 expression and tumor cell proliferation in gastric cancer

Authors: Jayati Chakrabarti, Loryn Holokai, LiJyun Syu, Nina G. Steele, Julie Chang, Jiang Wang, Syed Ahmed, Andrzej Dlugosz, and Yana Zavros

Institutions: University of Cincinnati, University of Cincinnati College of Medicine, University of Cincinnati Cancer Institute, University of Michigan

Quote: “Tumor cells expressing programmed cell death ligand 1 (PD-L1) interact with PD-1 on CD8+ cytotoxic T lymphocytes (CTLs) to inhibit CTL effector function. In gastric cancer, the mechanism regulating PD-L1 is unclear. The Hedgehog (Hh) signaling pathway is reactivated in various cancers including gastric. Here we tested the hypothesis that Hh-induced PD-L1 inactivates effector T cell function and allows gastric cancer cell proliferation.”

#6: cGAS-STING pathway in oncogenesis and cancer therapeutics

Authors: Brandon Yi Da Hoong, Yunn Hwen Gan, Haiyan Liu, and Ee Sin Chen

Institutions: National University of Singapore and National University Health System (NUHS) Singapore

Quote: “The host innate immunity offers the first line of defense against infection. However, recent evidence shows that the host innate immunity is also critical in sensing the presence of cytoplasmic DNA derived from genomic instability events, such as DNA damage and defective cell cycle progression. This is achieved through the cyclic GMP-AMP synthase (cGAS)/Stimulator of interferon (IFN) genes (STING) pathway. Here we discuss recent insights into the regulation of this pathway in cancer immunosurveillance, and the downstream signaling cascades that coordinate immune cell recruitment to the tumor microenvironment to destroy transformed cells through cellular senescence or cell death programs.”

#5: Anti-aging: senolytics or gerostatics (unconventional view)

Author: Mikhail V. Blagosklonny

Institution: Roswell Park Cancer Institute

Quote: “Based on lessons of cancer therapy, here I suggest how to exploit oncogene-addiction and to combine drugs to achieve selectivity. However, even if selective senolytic combinations will be developed, there is little evidence that a few senescent cells are responsible for organismal aging. I also discuss gerostatics, such as rapamycin and other rapalogs, pan-mTOR inhibitors, dual PI3K/mTOR inhibitors, which inhibit growth- and aging-promoting pathways.”

#4: Melatonin increases overall survival of prostate cancer patients with poor prognosis after combined hormone radiation treatment

Authors: Gennady M. Zharinov, Oleg A. Bogomolov, Irina V. Chepurnaya, Natalia Yu. Neklasova, and Vladimir N. Anisimov

Institutions: N.N. Petrov National Medical Research Center of Oncology

Quote: “The antitumor and immunomodulating activities of melatonin are widely known. These activities are based upon the multifactorial mechanism of action on various links of carcinogenesis. In the present paper, the long-term results of the clinical use of melatonin in the combined treatment of patients with prostate cancer of various risk groups were evaluated.”

#3: Scent test using Caenorhabditis elegans to screen for early-stage pancreatic cancer

Authors: Ayumu Asai, Masamitsu Konno, Miyuki Ozaki, Koichi Kawamoto, Ryota Chijimatsu, Nobuaki Kondo, Takaaki Hirotsu, and Hideshi Ishii

Institutions: Osaka University and Hirotsu Bio Science Inc.

Quote: “Although early detection and diagnosis are indispensable for improving the prognosis of patients with pancreatic cancer, both have yet to be achieved. Except for pancreatic cancer, other cancers have already been screened through scent tests using animals or microorganisms, including Caenorhabditis elegans.”

#2: Inflammatory responses and inflammation-associated diseases in organs

Authors: Linlin Chen, Huidan Deng, Hengmin Cui, Jing Fang, Zhicai Zuo, Junliang Deng, Yinglun, Xun Wang, and Ling Zhao

Institution: Sichuan Agricultural University

Quote: “Here, we review inflammatory responses within organs, focusing on the etiology of inflammation, inflammatory response mechanisms, resolution of inflammation, and organ-specific inflammatory responses.”

#1: The goal of geroscience is life extension

Author: Mikhail V. Blagosklonny

Institution: Roswell Park Cancer Institute

Quote: “Although numerous drugs seemingly extend healthspan in mice, only a few extend lifespan in mice and only one does it consistently. Some of them, alone or in combination, can be used in humans, without further clinical trials.”

Click here to read the latest papers published by Oncotarget in Volume 13.


Oncotarget is a unique platform designed to house scientific studies in a journal format that is available for anyone to read without a paywall making access more difficult. This means information that has the potential to benefit our societies from the inside out can be shared with friends, neighbors, colleagues, and other researchers, far and wide.

For media inquiries, please contact

Scientific Integrity

Open-Access Oncotarget Shifts to Continuous Publishing

As of 2022, the peer-reviewed and open-access journal Oncotarget has shifted to continuous publishing.

As of January 1, 2022, Oncotarget has shifted to a continuous publishing model. Papers will now be published continuously within yearly volumes in their final and complete form.
Listen to an audio version of this announcement

BUFFALO, NY, January 6, 2022 – Since its inception in 2010, Oncotarget has operated as a traditional-style journal that publishes online page numbered issues of peer-reviewed papers. Final paginated issues were then released in their permanent form to Pubmed.

As of 2022, Oncotarget has shifted to a continuous publishing model. Papers will now be published continuously within yearly volumes in their final and complete form. This means that qualified, rigorously peer-reviewed articles will be published online as soon as they are in their fully formatted and final version of record. With continuous publication, articles posted online are complete with citation details and are available in full text html and PDF formats. Additionally, research papers will appear on PubMed quickly—just days after the papers are published by Oncotarget.

Why the change? In an increasingly digital world, the open-access continuous publishing model is ideal for authors, researchers and overall readership. Continuous publishing allows for faster research dissemination, citation and clinical application, compared to a traditional format.

Oncotarget is committed to doing our part to ensure that research is available to the biomedical community as quickly as possible, while maintaining high standards of quality.

To learn more about Oncotarget, visit or connect with us on social media:

About Impact Journals (Oncotarget’s publisher):

Impact Journals is a New York-based open-access publisher with a mission to provide scientists with the opportunity to share their exceptional discoveries, and to present vital findings from different fields of biomedical science. Our goal is life without disease.

For media inquiries, please contact

Captain of Team Open Access Rides Again for Cancer Research

For the past four summers, Impact Journals has sponsored Team Open Access in the Ride for Roswell. The peloton has been captained by Sergei Kurenov, who is the Director of Surgical Simulation at Roswell Park Comprehensive Cancer Center — one of the leading cancer treatment and research centers in the nation. This year, Team Open Access was one of the many teams that participated to raise more than $5 million to help find a cure for cancer.

Prior to the 2021 Ride for Roswell (#RFR21) on August 7, we asked Sergei for his thoughts on the experience and motivation for riding. 

Please tell us how you got started in the Ride for Roswell event and what pushes you to participate each year. 

Kurenov: When I started working at Roswell Park Comprehensive Cancer Center, I saw how enthusiastically people supported this event and made a lot of contributions of their time in fundraising, patient care support, and cancer research. I wanted to be a part of this community. 

This will be your fourth year as team captain and sixth year participating in the Ride for Roswell. What has been your most memorable year or moment since you’ve started?

Kurenov: My first year of the Ride is the most memorable. More than a few thousand riders performed the National Anthem. Then, all the riders cheered on the cancer survivors, reminding us of exactly why we participate.

During last year’s Summer of the Ride, you were a part of over 600 teams that rode to raise more than $3.6 million in the fight against cancer amid a global pandemic. Looking back, how has that specific Ride impacted your outlook on this year’s event and cancer research?

Kurenov: The pandemic has highly affected cancer research. Physicians and researchers are working very hard to minimize pandemic impact and get life back to normal for our patients.

This year, we already raised [more than] $5 million, which will be provided to the development of cancer treatments and cancer research.

Sponsored by Impact Journals, Team Open Access is once again captained by Sergei Kurenov who explains his motivation to participate in the Ride for Roswell.
(Photo Courtesy of Roswell Park Comprehensive Cancer Center)

Tell us a little bit about the 2021 Open Access team.

Kurenov: The 2021 Open Access team has grown again and now we have nine team members, ranging in ages from 13 to 65. Most of the members are scientists in the cancer research field. 

Who is the fastest team member? The longest tenured teammate of yours? And, why do you think you make the perfect captain for this team?

Kurenov: Andrei is a great rider and I believe he is the fastest team member.

Liliya and Elena are the longest-tenured teammates for the last six years. They provide a tremendous help in the fundraising and in team organizing. They are also great photographers, making memorable images during the Ride. Each year, they create special Open Access team t-shirts which we are proud to wear during the Ride.

Who, or what, will you be focusing on as team captain this time around?

Kurenov: This year, Sofia joined the Open Access team. She is 13 years old and wants to ride 10 miles. Sofia and the rest of our team will ride together. Perhaps I will join the team or will have a barbecue for the whole team to celebrate afterwards.

How do you generally celebrate following the Ride?

Kurenov: After the Ride, all team members and many of our friends from Buffalo are planning to join a barbecue party in our backyard. Everyone is very welcome to the party.

Please give us your best pitch for people to start or continue donating to cancer research.

Kurenov: Earlier this year, I lost a very close friend who had fought against cancer for the last 17 years. When he was diagnosed, doctors predicted around 10 years of his survival after the initial treatment. However, thanks to the cancer research and new treatment developments in oncology, he almost doubled the doctors’ predictions. And, until this year, he lived a full life, working on cancer research, organizing scientific conferences, traveling around the world and making great photographs. His example shows that the constant cancer research and new technologies can help oncological patients. So, please continue donating to cancer research. This certainly will help to cure cancer more efficiently and save more lives.

Just like we requested of you last year, give us your best pitch for folks to join Team Open Access in 2022.

Kurenov: I am proud to announce that our team is supported again by Impact Journals – which publishes open-source, cancer-related scientific journals OncotargetAgingGenes & Cancer and Oncoscience. These journals include high-impact research papers of general interest and biological significance in all fields of cancer research. As an example, I would like to mention the studies published by Impact Journals that cycling is linked to a substantial decrease in the risk of developing and dying from cancer or heart disease. 

Join our team and help us reach our goal or donate to our efforts! No matter how you choose to support us, YOU are making a difference in the lives of the thousands of patients who turn to Roswell Park Comprehensive Cancer Center for hope each year.

Click here to learn more about the Ride for Roswell.

YOU MAY ALSO LIKE: More Oncotarget Videos on LabTube

Oncotarget is a unique platform designed to house scientific studies in a journal format that is available for anyone to read—without a paywall making access more difficult. This means information that has the potential to benefit our societies from the inside out can be shared with friends, neighbors, colleagues, and other researchers, far and wide.

For media inquiries, please contact

Oncotarget Launches New Special Collection on Breast Cancer

Listen to an audio version of this post

As you may know, Oncotarget is a scientific journal that publishes oncology-focused review and research papers every week on its open access platform — available at no cost to readers. Recently, a new Special Collections series debuted, and the first collection launched in honor of breast cancer awareness.

What makes our collections special? 

Oncotarget carefully selects the most credible and insightful studies to publish on, while also choosing papers that link different fields of oncology, cancer research, and biomedical sciences together to eliminate borders between specialties. The term “oncotarget” encompasses all molecules, pathways, cellular functions, cell types, and tissues that can be viewed as targets relevant to cancer, as well as other diseases. This journal is a resource for oncology researchers and the larger scientific community.

Before a study is published in Oncotarget, selected papers are meticulously peer-reviewed by an editorial board of award-winning scientific editors from academic universities and institutions well-known for their excellence and precision. Click here for a complete list of Oncotarget Editorial Board members.

Breast cancer research

Each year, over 40,000 women and men lose the fight against breast cancer in the United States. After skin cancer, breast cancer is the most commonly diagnosed cancer in women. The spread of breast cancer awareness and increase in research funding has helped develop advances and discoveries in the diagnosis and treatment of this proliferous cancer. 

The new Special Collections by Oncotarget are yet another tool researchers and science readers alike may use as a resource to learn more about breast cancer. The creators of these collections also hope that they may be used by scientists to discover new biomarkers, mechanisms, and therapies to improve our quality of life and better treat cancer and diseases.

Click here to explore the Special Collection on breast cancer.

Thanks to Impact Journals, we know exercise helps to fight breast cancer—for free


A recent breakthrough medical study has revealed that exercise has been proven to combat breast cancer.  The paper, entitled “Anticancer effect of physical activity is mediated by modulation of extracellular microRNA in blood,” was recently published in a June 2020 issue of the free online open-access medical journal Oncotarget. It was authored by an international team of medical researchers, headed by Dr. Alessandra Pulliero of the University of Genoa in Italy, and included Doctors Ming You, Pradeep Chaluvally-Raghavan, Barbara Marengo, Cinzia Domenicotti, Barbara Banelli, Paolo Degan, Luigi Molfetta, Fabio Gianiorio, and Alberto Izzotti.

The paper has already received widespread acclaim and coverage, reproduced online by prestigious organizations such as the National Center for Biotechnology Information (a branch of the U.S. National Institutes of Health), the American Association for the Advancement of Science, and ResearchGate.


While previous medical studies have shown that physical activity reduces the risk of cancer, particularly breast cancer, it’s been a mystery up to now exactly how this happens. Medical researchers have long suspected that this healing process is triggered by microRNAs, cellular fragments of RNA (ribonucleic acid) also known as miRNAs.

What’s RNA? Like DNA (deoxyribonucleic acid), RNA is one of the building blocks of life. It acts as a messenger transmitting instructions that control the synthesis of proteins. MicroRNAs stop a particular protein from being produced by binding to, and then destroying, the messenger RNA that would have produced this protein.

It is known that miRNAs are incredibly important when it comes to carcinogenesis (the creation of cancer) and cancer outcomes. In addition, MiRNAs regulate the creation of muscle tissueand muscle mass, and it’s been learned that structured exercise controls the creation of miRNA, especially in skeletal muscle.

The research team endeavored to test how exercise in breast cancer patients changed the production of miRNA in their bodies. To begin, 30 women from northern Italy between 54 and 78 years old walked for 45 minutes on the treadmill under identical conditions. Blood samples were taken from them both before and after the exercise sessions.


A technique known as microarray analysis revealed that structured exercise modified 14 different extracellular miRNAs related to cancer. Structured exercise caused all these miRNAs to decrease, except for a miRNA called miR-206, which increased. The researchers discovered that the most striking effects induced by exercise were changes in two miRNAs involved in breast cancer progression.

When the researchers investigated the biological effects of these two miRNAs on human breast cancer cells, they conclusively learned that working together, the changes in these two microRNAs activated by a physical exercise program suppressed breast cancer cells. Since too many miRNAs are linked to triggering inflammation and the creation of lymphocytes (white blood cells in the lymph system, which can influence breast cancer), the researchers also believe that structured exercise might reduce inflammation by modulating miRNA in the blood.

They also found that structured exercise improved blood pressure and glucose levels (cancerous tumors feed on glucose) among participants. The doctors discovered that these improvements in blood pressure and glucose levels helped regulate the miRNAs being studied, and in turn helped the miRNAs combat cancer.

This international team of researchers is confident that by testing for the levels of these miRNAs in patients’ blood, they’ve achieved a non-invasive way of establishing biomarkers (a measurable sign of whether a disease is present or how severe it is) to prevent breast cancer. This is potentially a significant breakthrough in breast cancer prevention and treatment.

As a result of this study, the medical community now knows that structured exercise fights breast cancer, and it’s been given a non-invasive way to diagnose and battle breast cancer—and possibly other forms of cancers as well.


This important study was able to be published, and noticed so quickly, because it was made available by Impact Journals’ free, open-access cancer research journal Oncotarget. Currently, over 20,000 Oncotarget papers are also searchable on PubMed, a widely used free search engine for life sciences and biomedical research. 

Because Oncotarget is open-access, it is free for everyone in the world to read. Most medical journals charge authors for publishing their work, and then in turn charge readers to access what could be all-important, life-saving information. With its revolutionary publishing model, Impact Journals, through publications like Oncotarget, makes it easy for anyone with important medical discoveries to communicate them to the public in the fastest and most effective way possible—possibly saving, prolonging, and improving many people’s lives in the process.

With the goal of a life without disease, Impact Journals allows scientists to share their exceptional discoveries, offers services that enable rapid dissemination of results, and presents vital findings from the many fields of biomedical science. It shares scientific findings through a comprehensive publication process entailing peer review, manuscript preparation, and publication promotion.

In addition, Oncotarget is well-known for publishing papers by Nobel Prize winners. The 2019 Nobel Prize in Physiology or Medicine was awarded jointly to Oncotarget Editorial Board members William G. Kaelin Jr., and Gregg L. Semenza for their discoveries of “how cells sense and adapt to oxygen availability,” which can help us understand and potentially treat a range of conditions like cancer, heart attack, stroke, and anemia. (They shared the Prize with UK physician-scientist Sir Peter J. Ratcliffe.) Both William G. Kaelin and Gregg L. Semenza are founding members of Oncotarget, where Gregg L. Semenza has published eight papers.

Another notable Oncotarget Nobel Prize winner is endocrinologist Andrew V. Schally, a member of Oncotarget’s Editorial Board who won the Nobel Prize in Physiology or Medicine in 1977 and who has published 12 papers in Oncotarget. Of Oncotarget’s work, he remarked: “Oncotarget is an outstanding and most important journal in the field of oncology and cancer research. Oncotarget is performing an extremely useful function for those of us working not only in cancer research, but also on other important topics in the field of medicine. Oncotarget deserves strong support from investigators working in the area of oncology as well as from the National Institutes of Health (NIH).”

If you would like to be first to learn about some of the most exciting new discoveries in medical science, consider investigating the groundbreaking work being published by Impact Journals, including its flagship publication, Oncotarget.