Tagged: metastasis

How Osteopontin Stimulates Mitochondrial Biogenesis and Cancer Metastasis

In this new study, researchers investigated the role of Osteopontin splice variants in cancer metastasis.

Mitochondrial biogenesis, the process of increasing the size and number of mitochondria within cells, plays a crucial role in cancer metastasis. Metastasizing cells exhibit a unique metabolism that differs from the well-known Warburg effect observed in primary tumors. While primary tumors primarily rely on glycolysis for energy production, metastatic cells rely on oxidative phosphorylation and ATP generation for short-term energy needs. However, over longer time frames, mitochondrial biogenesis becomes a prominent feature in the success of metastasis.

In a new study, researchers Gulimirerouzi Fnu and Georg F. Weber from the University of Cincinnati’s James L. Winkle College of Pharmacy investigate the connection between short-term oxidative metabolism and long-term mitochondrial biogenesis in cancer metastasis. They hypothesized that Osteopontin splice variants, specifically Osteopontin-c, stimulate an increase in mitochondrial size through the activation of specific signaling mechanisms. On December 1, 2023, their new research paper was published in Oncotarget, entitled, “Osteopontin induces mitochondrial biogenesis in deadherent cancer cells.”

“Over longer time frames, mitochondrial biogenesis becomes a pronounced feature and aids metastatic success. It has not been known whether or how these two phenomena are connected. We hypothesized that Osteopontin splice variants, which synergize to increase ATP levels in deadherent cells, also increase the mitochondrial mass via the same signaling mechanisms.”

The Role of Osteopontin Variants in Mitochondrial Biogenesis

Deadhesion, the process of detaching cancer cells from the extracellular matrix, is known to induce metabolic reprogramming and promote cancer cell survival in circulation. Osteopontin (OPN), a cytokine produced by cancer cells, has been implicated in tumor progression and the development of metastases. It mediates tumor cell survival and expansion under deadherent conditions, making it an ideal candidate for studying the mechanisms behind mitochondrial biogenesis. The authors of the research paper focused on two Osteopontin splice variants, Osteopontin-a and Osteopontin-c, and their effects on mitochondrial biogenesis.

Through their experiments with breast tumor cells, the authors found that both Osteopontin-a and Osteopontin-c contribute to mitochondrial biogenesis in deadherent cells. However, Osteopontin-c was more effective in stimulating an increase in mitochondrial size compared to Osteopontin-a. The authors also observed that the autocrine effects of Osteopontin variants are critical for the survival and anchorage-independence of disseminating malignant cells.

The Role of CD44v and SLC7A11 in Osteopontin Signaling

To further elucidate the mechanism behind Osteopontin-induced mitochondrial biogenesis, the authors investigated the receptors involved in Osteopontin signaling. They focused on CD44, a cell surface receptor known to interact with Osteopontin, and its variant CD44v. The authors found that Osteopontin-induced mitochondrial biogenesis is mediated via the binding of Osteopontin to CD44v.

Additionally, the authors discovered that the chloride-dependent cystine-glutamate transporter SLC7A11 plays a crucial role in Osteopontin signaling. The upregulation and co-ligation of SLC7A11, along with CD44v, leads to the activation of PGC-1, a known inducer of mitochondrial biogenesis. Surprisingly, the authors found that peroxide, an important intermediate in this signaling cascade, acts upstream of PGC-1 and is likely produced as a consequence of SLC7A11 recruitment and activation.

In Vivo Implications and Therapeutic Targets

To validate the relevance of their findings in clinical settings, the authors analyzed gene expression profiles in breast cancer metastases and metastases from other types of cancers. They identified the master regulator of mitochondrial biogenesis, PPARG, as well as its downstream effectors NRF1 and BACH1, to be upregulated in various metastases. These findings suggest that the Osteopontin-induced activation of PGC-1 and subsequent mitochondrial biogenesis may play a crucial role in cancer metastasis.

The authors also conducted in vivo experiments using mouse models. They observed that suppression of the biogenesis-inducing mechanisms led to a reduction in disseminated tumor mass. These findings not only confirm the functional connection between short-term oxidative metabolism and long-term mitochondrial biogenesis in cancer metastasis but also provide potential mechanisms and targets for treating cancer metastasis.

Conclusion

This study provides valuable insights into the role of Osteopontin splice variants in regulating mitochondrial biogenesis in metastatic cancer cells. The researchers demonstrated that Osteopontin-c stimulates an increase in mitochondrial size through the activation of specific signaling mechanisms involving CD44v and SLC7A11. These findings have significant implications for understanding the metabolic adaptations of metastatic cancer cells and suggest potential targets for therapeutic interventions. Further research is needed to fully elucidate the intricate signaling pathways involved in Osteopontin-induced mitochondrial biogenesis and to explore the clinical applications of these findings in cancer treatment.

“This study confirms a functional connection between the short-term oxidative metabolism and the longer-term mitochondrial biogenesis in cancer metastasis – both are induced by Osteopontin-c. The results imply possible mechanisms and targets for treating cancer metastasis.”

Click here to read the full research paper in Oncotarget.

Oncotarget is an open-access, peer-reviewed journal that has published primarily oncology-focused research papers since 2010. These papers are available to readers (at no cost and free of subscription barriers) in a continuous publishing format at Oncotarget.com. Oncotarget is indexed/archived on MEDLINE / PMC / PubMed.

Click here to subscribe to Oncotarget publication updates.

For media inquiries, please contact media@impactjournals.com.

Immunotherapy Response in Primary vs Metastatic Pancreatic Cancer

In this editorial, researchers delve into the immunotherapeutic challenges posed by the tumor microenvironment and liver metastasis in pancreatic cancer.

Pancreatic ductal adenocarcinoma (PDA), a common type of pancreatic cancer, has proven to be largely resistant to immunotherapy, a treatment that uses the body’s immune system to fight cancer. Despite numerous successful pre-clinical trials using sophisticated PDA mouse models, clinical trials have failed to show a significant improvement in survival.

In a recent editorial, researchers Brian Diskin, Sarah Schwartz and George Miller from Trinity Health of New England shed light on the complex interplay between the immune system and pancreatic cancer. Their paper was published in Oncotarget on April 24, 2023, and entitled, “The critical immune basis for differential responses to immunotherapy in primary versus metastatic pancreatic cancer.”

Tumor Microenvironment and Liver Metastasis: Challenges in Pancreatic Cancer

The authors attribute PDA immunotherapy resistance to the unique characteristics of the tumor microenvironment (TME). The TME is often hypoxic and fibrotic, making it inaccessible to immune cells. Furthermore, the immune cells that do infiltrate the TME often have tolerogenic features, meaning they are more likely to tolerate the presence of cancer cells rather than attack them.

PDA most commonly metastasizes to the liver, an organ known for its immune tolerance. The liver is home to a diverse array of innate immune populations, including NK cells, Kupfer cells, NKT cells, and double negative T cells. Despite this, the liver is the most common location for metastasis from gastrointestinal cancers.

“It is an unfortunate fact that all failed clinical trials assessing immunotherapeutic efficacy were conducted in metastatic PDA, whereas basic preclinical investigations are usually performed in primary PDA using genetically engineered mouse models. We postulated that this dichotomy may explain the gap between preclinical promise and ultimate clinical failure.”

Divergent Responses to Immunotherapy: Primary vs. Metastatic 

“The potentially divergent responses to immunotherapy in the respective environments of primary versus metastatic PDA within the same host has not been well-studied.”

The authors highlight the lack of research into the potentially divergent responses to immunotherapy in primary versus metastatic PDA. They argue that this gap in knowledge may explain the discrepancy between the promising results of pre-clinical trials and the disappointing outcomes of clinical trials.

In their research, they discovered that the TMEs of primary PDA and liver metastases differ significantly, and this difference plays a critical role in the site-specific response to immunotherapy. They found that liver metastases are uniquely resistant to immunotherapies, in stark contrast to the immunotherapeutic responsiveness of primary PDA.

“We discovered that the respective TMEs of primary PDA and liver metastases differ markedly and this fact plays a critical role in dictating site-specific PDA response to immunotherapy [6].”

The Role of B Cells

The researchers identified B cells as a key player in this differential response. They found that B cells constituted approximately 25% of the tumor-infiltrating lymphocytes in metastatic PDA liver deposits, compared to approximately 10% in primary PDA. They also discovered a novel population of CD24+CD44–CD40– B cells in the metastatic liver, which is recruited to the metastatic milieu by Muc1hiIL18hi tumor cells.

“[…] by targeting B cells or blocking CD200/BTLA, we demonstrated enhanced macrophage and T-cell immunogenicity, which enabled immunotherapeutic efficacy of liver metastases.”

However, the authors note that primary PDA sites lack this b-cell population. Instead, they are characterized by macrophages and effector T cells that have a higher ability to provoke an immune response. This makes their immunotherapeutic responsiveness far more robust than metastatic liver PDA.

Conclusion

This research underscores the importance of understanding the immune basis of differential responses to immunotherapy in primary versus metastatic pancreatic cancer. It highlights the need for further research into the role of the TME and immune cells like B cells in the response to immunotherapy. Such insights could pave the way for more effective treatments for this challenging disease.

“[…] our data suggest that models of primary PDA are poor surrogates for evaluating immunity or treatment response in advanced disease.”

Click here to read the full editorial paper in Oncotarget.

Oncotarget is an open-access, peer-reviewed journal that has published primarily oncology-focused research papers since 2010. These papers are available to readers (at no cost and free of subscription barriers) in a continuous publishing format at Oncotarget.com. Oncotarget is indexed/archived on MEDLINE / PMC / PubMed.

Click here to subscribe to Oncotarget publication updates.

For media inquiries, please contact media@impactjournals.com.

The Evolution of Metastatic Cancer: Mechanisms and Drivers

In a new editorial, researchers explore genomic evolution in metastatic cancer, how therapy can drive it and the implications for developing new treatments. 

The Evolution of Metastatic Cancer: Mechanisms and Drivers

The Trending With Impact series highlights Oncotarget publications attracting higher visibility among readers around the world online, in the news and on social media—beyond normal readership levels. Look for future science news about the latest trending publications here, and at Oncotarget.com.

Listen to an audio version of this article

There are several theories that attempt to explain the genesis of cancer. One prominent theory is the genetic theory—proposing that cancer may arise from the accumulation of genetic mutations that alter the normal functioning of cells. These mutations can drive the formation of tumors, which can then spread to other parts of the body in a process known as metastasis. Metastatic cancer is often difficult to treat because it has evolved to become resistant to standard therapies. 

“It is generally accepted that development of cancer is a slow process, likely spanning decades during which the developing neoplastic cells sequentially acquire genomic alterations that will eventually give rise to the primary tumor [1].”

In a new editorial, researchers Ditte S. Christensen and Nicolai J. Birkbak from Aarhus University discuss mechanisms of genomic evolution in metastatic cancer, how therapy can drive it and the implications for developing new treatments. Their editorial paper was published in Oncotarget on March 21, 2023, entitled, “Therapy drives genomic evolution in metastatic cancer.”

Therapy Can Drive Metastatic Cancer

Cancer cells are master adaptors and have a remarkable ability to evolve, especially in response to therapy. When cancer cells are exposed to chemotherapy, radiation or targeted therapies, they can develop resistance to these treatments by acquiring new genetic mutations. This can occur through a variety of mechanisms, including mutations in the genes that regulate cell division and DNA repair, as well as the acquisition of new genes that confer resistance to specific drugs.

In this editorial, the authors discuss how this process of genomic evolution can lead to the development of metastatic cancer. As cancer cells acquire new mutations that allow them to survive and grow in the presence of therapy, they may also acquire mutations that allow them to invade and colonize new tissues. This can lead to the development of new tumors in distant parts of the body, which are often more difficult to treat than the original tumor.

“How the ability to perform these multiple independent steps is acquired by cancer cells remains a mystery.”

Mechanisms of Metastatic Cancer

Understanding the mechanisms by which cancer cells evolve in response to therapy is essential for developing new treatments for metastatic cancer. The clonal bottleneck hypothesis and the gatekeeper mutation hypothesis are two different hypotheses that attempt to explain how cancer cells acquire the ability to metastasize and spread to distant parts of the body. The clonal bottleneck hypothesis proposes that metastatic cancer is the result of a single subclone of cancer cells from the primary tumor that successfully seeds new sites. According to this hypothesis, the cancer cells undergo a clonal bottleneck event where only a small number of cells from the primary tumor are able to survive and successfully colonize new tissues. This hypothesis suggests that the ability to metastasize is an inherent property of the subclone that successfully colonizes new sites.

On the other hand, the gatekeeper mutation hypothesis proposes that metastatic cancer is the result of a specific genetic mutation or mutations that act as gatekeepers, allowing cancer cells to metastasize and spread to new sites. According to this hypothesis, the ability to metastasize is acquired through the acquisition of one or more specific genetic mutations that allow cancer cells to bypass the normal checks and balances that prevent uncontrolled growth and invasion of surrounding tissues.

Exploring Gatekeeper Genomic Events

In a 2022 study, the authors of this editorial and their team explored the concept of gatekeeper genomic events by comparing primary and metastatic tumors on a large scale. Their large-scale analysis of more than 40,000 individual tumors from the AACR Genomics Evidence Neoplasia Information Exchange (GENIE) project found an increase in mutation burden and chromosomal instability in metastatic tumors, but no evidence of individual mutations driving the metastatic process itself. The concept of gatekeeper mutations remains a hypothesis, and further research is needed to explore this idea in more detail.

This study and others suggest that metastatic cancer dissemination involves a bottleneck event where a highly fit clone from a primary tumor successfully seeds distant sites. Strong selective pressure from anti-cancer therapy drives the acquisition of private driver mutations associated with therapy resistance in individual metastatic tumors. There is limited evidence for the existence of specific gatekeeper mutations. It is also possible that the primary driver of metastatic cancer is found outside the cancer cells.

“Indeed, it may be that a primary driver of metastatic cancer is to be found outside the cancer cells themselves, potentially through inflammation in the tumor-immune microenvironment or through interaction with a declining host immune system which may enable immune escape and sudden systemic dissemination by a highly proliferative primary tumor clone.”

Conclusions

In conclusion, the genetic theory of cancer proposes that cancer arises from genetic mutations that alter the normal functioning of cells, leading to the formation of tumors and metastasis. This editorial by Christensen and Birkbak highlights the process of genomic evolution in metastatic cancer and its implications for cancer treatment. Understanding the mechanisms by which cancer cells evolve in response to therapy is crucial for developing new treatments for metastatic cancer. Recent studies have shed light on the clonal origin of metastatic tumors and the role of selective pressure from anti-cancer therapy in the acquisition of private driver mutations associated with therapy resistance. While the concept of gatekeeper mutations remains a hypothesis, it is clear that the acquisition of aggressive cancer traits is the primary driver of metastatic potential. Further research is needed to explore this idea in more detail and develop effective therapies for metastatic cancer.

“It will be exciting to further explore these questions as more data becomes available on metastatic cancers, particularly with paired primary and metastatic tumor samples with sequential biopsies to facilitate the analysis of dynamic tumor evolution over time, rather than through static snapshots provided by samples obtained at a single time point.”

Click here to read the full editorial published in Oncotarget.

ONCOTARGET VIDEOS: YouTube | LabTube | Oncotarget.com

Oncotarget is an open-access, peer-reviewed journal that has published primarily oncology-focused research papers since 2010. These papers are available to readers (at no cost and free of subscription barriers) in a continuous publishing format at Oncotarget.com. Oncotarget is indexed/archived on MEDLINE / PMC / PubMed.

Click here to subscribe to Oncotarget publication updates.

For media inquiries, please contact media@impactjournals.com.