Tagged: Trending With Impact

Targeting Stem Cell-like Traits: How miR-10b Inhibition Treats Metastatic Breast Cancer

“Our results demonstrate that inhibition of miR-10b using MN-anti-miR10b decreases the stemness of breast cancer cells, supporting dedifferentiation as a mechanism through which the nanodrug may function as a therapy.”

While there have been significant improvements in breast cancer detection and treatment, the outlook for metastatic breast cancer remains bleak, with only a 30% five-year survival rate. This is largely due to existing therapies’ inability to effectively target the unique characteristics of metastatic cells. One key factor in metastasis is miR-10b, a small noncoding RNA known to influence cancer cell invasion, migration, viability, and proliferation.

In their paper, researchers Alan Halim, Nasreen Al-Qadi, Elizabeth Kenyon, Kayla N. Conner, Sujan Kumar Mondal, Zdravka Medarova, and Anna Moore from Michigan State University’s Precision Health Program, College of Human Medicine, and College of Veterinary Medicine, and Transcode Therapeutics Inc. in Newton, Massachusetts, shared findings showing that inhibiting miR-10b impairs breast cancer cell stemness. Their research paper, entitled, “Inhibition of miR-10b treats metastatic breast cancer by targeting stem cell-like properties” was published in Volume 15 of Oncotarget on August 26, 2024.

THE STUDY

In this study, researchers investigated the effects of repeated MN-anti-miR10b treatments on local and distant metastases. They observed over 93% inhibition of miR-10b in cryosectioned samples and noted reduced miR-10b expression in lymph node and lung metastases after weekly dosing. RNA sequencing revealed upregulation of genes, including ATP6V0D2, EPHB2, KLF4, KLF7, NCOR2, TMEM268, and VDR, associated with developmental processes. Functional enrichment analysis highlighted biological processes such as cell differentiation and tissue development in these upregulated genes.

The researchers also explored the link between miR-10b expression and stem-like properties in cancer cells. Elevated miR-10b levels were found in stem-like breast cancer cells. MN-anti-miR10b reduced stemness-related traits in MDA-MB-231 and MCF-7 cells, as shown by reduced aldehyde dehydrogenase activity and smaller spheroids in tumorsphere assays. These results suggest that inhibiting miR-10b effectively targets stem-like properties in metastatic breast cancer, offering potential therapeutic benefits.

DISCUSSION

Inhibition of miR-10b has been shown to be an effective treatment strategy for metastatic breast cancer. The nanodrug MN-anti-miR10b was found to significantly downregulate miR-10b expression in cancer cells, leading to decreased cell migration, invasion, proliferation, and viability. The researchers investigated the time course of miR-10b inhibition and confirmed that the nanodrug effectively reduced miR-10b expression in both regional and distant metastases. RNA sequencing analysis revealed that the inhibition of miR-10b by MN-anti-miR10b upregulated genes associated with developmental processes, indicating an effect on the stem cell-like properties of cancer cells.

The study also demonstrated a correlation between miR-10b expression and stemness in cancer cells. Cells with increased stemness, identified by the CD44+/CD24- surface marker phenotype, showed higher miR-10b expression. Treatment with MN-anti-miR10b resulted in decreased stemness-associated properties, as observed through the Aldefluor assay and tumorsphere formation assays. These findings suggest that MN-anti-miR10b has a differentiation effect on cancer cells and targets dedifferentiated, stem cell-like cancer cells. The upregulation of genes associated with developmental processes by MN-anti-miR10b further supports the notion that cancer cells overexpressing miR-10b are in a less-developed, more stem cell-like state.

Overall, the study provides valuable insights into the therapeutic effects of miR-10b inhibition using MN-anti-miR10b in metastatic breast cancer. The findings suggest that targeting miR-10b and stem cell-like properties in cancer cells could be a promising approach for the treatment of various types of metastatic carcinoma.

IN CONCLUSION

Despite the progress made in breast cancer detection and treatment, the prognosis for metastatic breast cancer remains poor. A significant factor contributing to metastasis is miR-10b, a small RNA molecule involved in cancer cell invasion and migration. The researchers have developed a nanodrug called MN-anti-miR10b that delivers antisense oligomers to inhibit miR-10b in cancer cells.

In mouse models of metastatic triple-negative breast cancer, MN-anti-miR10b has shown promising results. It prevents the development of metastases and can eliminate existing metastases when combined with chemotherapy, even after treatment cessation. Recent studies have also linked miR-10b to the acquisition of stem cell-like properties in cancer cells, including chemotherapy resistance.

In this study, the researchers provide transcriptional evidence that inhibiting miR-10b with MN-anti-miR10b activates developmental processes in cancer cells. They also demonstrate that stem-like cancer cells have higher expression of miR-10b. Importantly, treatment of breast cancer cells with MN-anti-miR10b reduces their stemness, indicating that the nanodrug can effectively target and impair the stem-like properties of breast cancer cells.

These findings highlight the potential of MN-anti-miR10b as a treatment option for breast cancer subtypes characterized by stem-like properties. By inhibiting miR-10b, the nanodrug could disrupt the stemness of cancer cells and may offer a new approach to improve the outcomes for metastatic breast cancer patients.

Click here to read the full research paper in Oncotarget.

Oncotarget is an open-access, peer-reviewed journal that has published primarily oncology-focused research papers since 2010. These papers are available to readers (at no cost and free of subscription barriers) in a continuous publishing format at Oncotarget.com

Oncotarget is indexed and archived by PubMed/Medline, PubMed Central, Scopus, EMBASE, META (Chan Zuckerberg Initiative) (2018-2022), and Dimensions (Digital Science).

Click here to subscribe to Oncotarget publication updates.

For media inquiries, please contact media@impactjournals.com.

CDR3s and Renalase-1 Correlate with Increased Melanoma Survival 

Our group has demonstrated that chemical complementarity between tumor resident, T-cell receptor, complementarity-determining region 3 (CDR3s), and MAGEA3/6 correlates with increased survival in patients with melanoma.”

In this study, Saif Zaman, Fred S. Gorelick, Andrea Chrobrutskiy, Boris I. Chobrutskiy, Gary V. Desir, and George Blanck from Yale School of MedicineVeteran’s Administration Healthcare SystemOregon Health and Science University HospitalMorsani College of Medicine, and the H. Lee Moffitt Cancer Center and Research Institute, investigated the chemical complementarity between melanoma-resident T-cell receptor (TCR) complementarity-determining region 3 (CDR3) amino acid sequences (AAs) and the renalase-1 protein. On August 5, 2024, their research paper was published in Oncotarget‘s Volume 15, entitled, “Chemical complementarity of tumor resident, T-cell receptor CDR3s and renalase-1 correlates with increased melanoma survival.”

The Study

The researchers investigated the potential of the RP220 peptide as an antigenic target for T cells by assessing the electrostatic and hydrophobic complementarity between T-cell receptor (TCR) CDR3s and the RP220 peptide of the renalase (RNLS) protein. They found that higher complementarity scores were linked to significantly improved survival probabilities, with hydrophobic forces further refining these distinctions. The associations varied depending on the dataset and method used.

The study also explored correlations between TCR CDR3-RNLS amino acid alignments and immune gene expression. Several immune signature genes, such as CD86, TIGIT, CIITA, and CD4, were significantly associated with better overall survival when showing higher complementarity scores.

Researchers also examined how RNLS expression levels affected these correlations. They found that higher RNLS mRNA expression was associated with worse survival, while lower RNLS expression combined with high complementarity scores predicted better outcomes. This trend held for both the full-length RNLS protein and the RP220 peptide.

The study revealed that specific regions of the RNLS protein, including the RP220 peptide, had higher complementarity with TCR CDR3s, suggesting they may serve as potential antigenic targets.

Discussion

The researchers explored the potential of the RNLS protein as a tumor antigen by examining the chemical complementarity between melanoma tumor-resident T-cell receptor (TCR) CDR3s and the amino acid (AA) sequence of RNLS. They found that increasing complementarity correlated with improved overall survival (OS) outcomes, supporting previous in vitro and in vivo data. This suggests that RNLS could be recognized by TCRs, triggering immune responses against melanoma.

Gene expression analyses revealed that as complementarity scores between TCRs and RNLS AAs increased, so did the expression of T-cell activation-associated genes, indicating enhanced T-cell activity and anti-tumor immune responses. The association between TCR complementarity and OS probabilities was more pronounced in cases with low RNLS expression levels, suggesting that high complementarity may be particularly beneficial in tumors with reduced RNLS-mediated immune inhibition.

These findings suggest that RNLS could serve as an antigen for TCRs in melanoma, supporting further exploration of its potential as a target for immunotherapy and vaccine design.

In conclusion, this research suggests that RNLS could potentially serve as an antigen for T-cell receptors (TCRs) in melanoma. The correlation between TCR complementarity to RNLS and improved overall survival supports the idea that T-cell responses targeting RNLS may play a role in antitumor immunity. These findings highlight the potential of RNLS as a valuable target for immunotherapy and vaccine development for melanoma treatment. 

Further research in this area is warranted.

Click here to read the full research paper in Oncotarget.

Oncotarget is an open-access, peer-reviewed journal that has published primarily oncology-focused research papers since 2010. These papers are available to readers (at no cost and free of subscription barriers) in a continuous publishing format at Oncotarget.com

Oncotarget is indexed and archived by PubMed/Medline, PubMed Central, Scopus, EMBASE, META (Chan Zuckerberg Initiative) (2018-2022), and Dimensions (Digital Science).

Click here to subscribe to Oncotarget publication updates.

For media inquiries, please contact media@impactjournals.com.

Harnessing the Power of Nanobodies: Inhibiting Metastasis of 4T1-12B Breast Tumor Cells

In this study, researchers show that treatment of 4T1-12B mouse breast cancer cells with this nanobody inhibits V-ATPase-dependent acidification of the media and invasion of these cells in vitro.

Researchers recently developed a nanobody directed against an extracellular epitope of the mouse V-ATPase c subunit. Zhen Li, Mohammed A. Alshagawi, Rebecca A. Oot, Mariam K. Alamoudi, Kevin Su, Wenhui Li, Michael P. Collins, Stephan Wilkens, and Michael Forgac from Tufts University School of MedicineTufts UniversityDana Farber Cancer Institute, Harvard Medical SchoolUniversity of Minnesota School of MedicinePrince Sattam Bin Abdulaziz UniversityKorro BioSUNY Upstate Medical University; and Foghorn Therapeutics, suggest that plasma membrane V-ATPases represent a novel therapeutic target to limit breast cancer metastasis. The vacuolar H+-ATPase (V-ATPase) is an ATP-dependent proton pump that functions to control the pH of intracellular compartments as well as to transport protons across the plasma membrane of various cell types, including cancer cells.

On August 14, 2024, their research paper was published in Oncotarget’s Volume 15, entitled, A nanobody against the V-ATPase c subunit inhibits metastasis of 4T1-12B breast tumor cells to lung in mice.”

The Research

Breast cancer is one of the most diagnosed cancers, accounting for almost one-third (30%) of all new diagnoses in women in 2022. At the time of diagnosis, 20–30% of patients with early-stage breast cancer will go on to develop metastatic breast cancer. 6–10% of all patients with breast cancer have stage IV disease at time of diagnosis. It has been shown that V-ATPase plays an important role in promoting the invasiveness of many cancer cell types, including breast cancer cells. 

This study demonstrated that inhibiting cell surface V-ATPases can effectively block tumor cell invasion. The findings indicate that anti-V-ATPase antibodies targeting an extracellular region of the V-ATPase can suppress activity on the surface of cancer cells, as well as inhibit both in vitro invasion and in vivo metastasis in a mouse model. This represents a promising advancement toward developing a new therapy to limit breast cancer metastasis.

Results

A camelid nanobody against the N-terminus of the mouse V-ATPase c subunit was prepared using phage display. The nanobody was dimerized through disulfide bonding to create a bivalent molecule. The purified nanobody was detected using Coomassie blue staining and Western blotting. The apparent molecular weight of the dimer on SDS-PAGE was around 45 kDa, slightly faster than the predicted weight of 56.8 kDa. The nanobody was tested for its ability to inhibit V-ATPase-dependent acidification in mouse 4T1-12B cells. The nanobody treatment resulted in a similar increase in extracellular pH as treatment with concanamycin, a known V-ATPase inhibitor. 

Combining both the nanobody and concanamycin did not significantly enhance the effect. The nanobody effectively inhibited V-ATPase-dependent extracellular acidification without affecting cell viability. The anti-V-ATPase nanobody was tested for its ability to inhibit in vitro invasion of 4T1-12B cells. Treatment with the nanobody significantly inhibited invasion, like its inhibition of extracellular acidification. The nanobody effectively inhibits both extracellular acidification and in vitro invasion of 4T1-12B cells with similar affinity. 

The administration of the anti-V-ATPase nanobody was tested to determine its effect on tumor growth and metastasis in mice. Different amounts of the nanobody were administered to mice without any adverse effects. The effect of nanobody administration on in vivo metastasis was then tested using 4T1-12B cells implanted in the mammary fat pad. However, no significant difference in tumor volumes was observed between the control and nanobody-treated groups at the end of the study. Treatment with the anti-V-ATPase nanobody resulted in a significant reduction in lung metastasis but had no effect on tumor growth or leg metastases. No significant metastasis was observed in other organs. In contrast, treatment with the anti-GFP nanobody did not reduce lung metastases.

Discussion

The researchers’ previous results demonstrated that selective inhibition of cell surface V-ATPases using an antibody or bafilomycin showed potential in inhibiting invasion of breast cancer cells. However, the use of antibodies against the native c subunit proved challenging due to its conservation and limited exposure. To overcome this, a nanobody against a native epitope of the c subunit was developed through in vitro screening. This nanobody successfully inhibited cell surface V-ATPase activity in mouse 4T1-12B breast cancer cells and showed a correlation between inhibition of invasion and extracellular acidification. In mice, the nanobody treatment significantly reduced lung metastases, but had no effect on tumor growth or leg metastasis. 

The study suggests that different mechanisms may be involved in tumor cell invasion in different tissues. The potential side effects of inhibiting cell surface V-ATPases were also discussed, highlighting the limited presence of these pumps in certain cells and the potential benefits of inhibiting osteoclast function for breast cancer metastasis to bone. 

Overall, the findings support the use of inhibitory nanobodies against cell surface V-ATPases as a potential therapeutic approach to inhibit breast cancer metastasis.

“These results provide support for the use of an inhibitory antibody directed against an extracellular epitope of the V-ATPase as a potential anti-metastatic therapeutic to inhibit breast cancer metastasis.”

Click here to read the full research paper in Oncotarget.

Oncotarget is an open-access, peer-reviewed journal that has published primarily oncology-focused research papers since 2010. These papers are available to readers (at no cost and free of subscription barriers) in a continuous publishing format at Oncotarget.com

Oncotarget is indexed and archived by PubMed/Medline, PubMed Central, Scopus, EMBASE, META (Chan Zuckerberg Initiative) (2018-2022), and Dimensions (Digital Science).

Click here to subscribe to Oncotarget publication updates.

For media inquiries, please contact media@impactjournals.com.

Key Roles of MIF, DDT, and CD74 in Melanoma Prognosis and Therapy

In this new study, researchers present the first retrospective study evaluating differential gene expression of MIF, DDT, and relevant pathway markers in relation to clinical outcomes in melanoma patients.

Macrophage Migration Inhibitory Factor (MIF) and its homolog D-dopachrome Tautomerase (DDT) have been implicated as drivers of tumor progression in various cancers. Recent evidence suggests that MIF could be a therapeutic target in immune checkpoint inhibition (ICI) resistant melanomas; however, clinical evidence for MIF, and particularly for DDT, remains limited.

Researchers Caroline Naomi Valdez, Gabriela Athziri Sánchez-Zuno, Lais Osmani, Wael Ibrahim, Anjela Galan, Antonietta Bacchiocchi, Ruth Halaban, Rajan P. Kulkarni, Insoo Kang, Richard Bucala, and Thuy Tran from Yale UniversityOregon Health and Science UniversityCancer Early Detection Advanced Research Center (CEDAR); and the Department of Veterans Affairs Portland Health Care System analyzed 97 patients treated at Yale for melanoma between 2002–2020. Their research paper was published in Oncotarget’s Volume 15 on July 19, 2024, entitled, “Prognostic and therapeutic insights into MIF, DDT, and CD74 in melanoma.”

In their study, the researchers noted that melanoma is one of the most aggressive and lethal forms of cancer, with an estimated 99,700 new cases expected in 2024. The development of immune checkpoint inhibitors (ICIs) has significantly transformed cancer treatment and is now a cornerstone for managing several cancers, including advanced melanoma. Anti-CTLA-4 inhibitors, which target regulatory T cells, and anti-PD-1/L-1 inhibitors, which target activated T cells, dendritic cells, and tumor cells, have reshaped melanoma management, leading to improvements in progression-free and overall survival, with up to 22% of patients experiencing a complete response (CR). Data suggests that the ratio of CD74:MIF and CD74:DDT expression in melanoma may provide prognostic value and potentially serve as clinical biomarkers for patients with melanoma.

The study significantly expands on previous research by including a larger cohort of individuals and employing a comprehensive approach to defining high and low MIF and DDT expression. The survival analysis findings are consistent with existing literature, demonstrating that increased MIF levels are associated with worse prognosis in patients with melanoma, particularly in those with advanced disease or evidence of metastases.

The data presented in this research paper supports existing evidence on the intratumoral effects of MIF and DDT on tumor permissiveness, primarily through immune modulation, with implications for melanoma prognosis. The findings suggest that MIF and DDT may serve as therapeutic targets and biomarkers for predicting treatment response and survival, with CD74:MIF and CD74:DDT showing promise as markers of ICI response in patients undergoing treatment. Further investigation is needed to fully understand the role and functions of DDT in the melanoma microenvironment, as well as its distinct, non-overlapping functions in tumorigenesis.

“Our study is the first to report survival findings in association with intratumor DDT expression and CD74:DDT expression level ratio.”

Click here to read the full research paper in Oncotarget.

Oncotarget is an open-access, peer-reviewed journal that has published primarily oncology-focused research papers since 2010. These papers are available to readers (at no cost and free of subscription barriers) in a continuous publishing format at Oncotarget.com

Oncotarget is indexed and archived by PubMed/Medline, PubMed Central, Scopus, EMBASE, META (Chan Zuckerberg Initiative) (2018-2022), and Dimensions (Digital Science).

Click here to subscribe to Oncotarget publication updates.

For media inquiries, please contact media@impactjournals.com.

Dr. Blagosklonny’s Strategy: From Osimertinib to Preemptive Combinations

This article dissects Dr. Mikhail V. Blagosklonny’s paradigm-shifting perspective on preemptive combinations for treating EGFR-mutant non-small cell lung cancer.

In the relentless battle against non-small cell lung cancer (NSCLC) driven by epidermal growth factor receptor (EGFR) mutations, the development of resistance has long been a formidable obstacle. Historically, first- and second-generation EGFR tyrosine kinase inhibitors (TKIs) like gefitinib, erlotinib, afatinib, and dacomitinib have faced a significant hurdle: the emergence of the T790M point mutation in approximately 50% of patients, rendering the tumor resistant to these therapies.

This resistance stems from a sobering reality – before treatment, a small subset of cancer cells already harbor the T790M mutation, conferring no selective advantage initially. However, once treatment commences, these rare mutated cells proliferate selectively, eventually dominating the tumor population and diminishing the effectiveness of first- and second-generation TKIs.

The Rise of Osimertinib: A Beacon of Hope

In 2015, the FDA approved osimertinib, a third-generation EGFR TKI, as a second-line therapy for NSCLC patients with the T790M mutation. This approval recognized that untreated tumors are typically T790M-negative, with the mutation potentially present in only a single cell initially. Moreover, approximately 50% of patients do not harbor this mutation at all, underscoring the rationale for administering osimertinib after resistance to first- or second-generation TKIs emerges.

However, a paradigm shift was on the horizon. Osimertinib’s ability to target the T790M mutation, coupled with its potential to eliminate the rare resistant cells before they proliferate, paved the way for a groundbreaking approach: administering osimertinib as a first-line treatment, without waiting for resistance to develop.

Preemptive Combinations: A Multifaceted Strategy

In a seminal 2018 clinical trial, osimertinib demonstrated its prowess as a first-line treatment, significantly extending median progression-free survival (PFS) compared to first-generation EGFR inhibitors (18.9 months vs. 10.2 months). Remarkably, while the objective response rates were similar between the two groups, the duration of response was nearly doubled with osimertinib (17.2 months vs. 8.5 months).

Capitalizing on these findings, Dr. Mikhail V. Blagosklonny introduced the concept of “preemptive combinations” – a multi-pronged approach to not only induce a therapeutic response but also eliminate the few resistant cells harboring pre-existing mutations. By combining osimertinib with first- or second-generation EGFR inhibitors like gefitinib and afatinib, these preemptive combinations could potentially prevent on-target resistance mechanisms, thereby extending PFS and overall survival (OS) for a substantial proportion of patients. On March 15, 2024, Dr. Blagosklonny’s research perspective was published in Oncotarget’s Volume 15, entitled, “From osimertinib to preemptive combinations.”

Expanding the Armamentarium: Comprehensive Preemptive Combinations

While osimertinib addresses the T790M mutation, other resistance mechanisms remain a concern. Approximately 50% of resistance cases involve on-target secondary mutations within EGFR, such as L718, G724, L792, G796, and C797, which can be targeted by first- or second-generation EGFR inhibitors. Additionally, off-target mechanisms like MET and HER2 amplifications contribute to resistance.

To combat this multifaceted challenge, Dr. Blagosklonny proposed a comprehensive preemptive combination comprising osimertinib, afatinib (or a first-generation EGFR inhibitor), and capmatinib (a potent MET inhibitor). This triple-threat approach could potentially prevent up to 75% of resistance mechanisms, dramatically extending median PFS from 18 months with osimertinib alone to an estimated 40 months.

Addressing Heterogeneity: The Bittersweet Reality

While osimertinib undoubtedly improves median PFS and OS compared to first-generation TKIs, a sobering reality emerges: approximately 20% of patients may experience a shortened PFS due to pre-existing mutations like C797S, which render the tumor resistant to osimertinib but sensitive to first-generation TKIs. In these cases, osimertinib inadvertently selects for resistant clones, potentially harming a subset of patients.

The solution, as proposed by Dr. Blagosklonny, lies in the simplicity of preemptive combinations. By combining osimertinib with gefitinib, or even a triple combination with afatinib, the risk of selecting for resistant clones is mitigated, ensuring that no patient is inadvertently harmed by the superior TKI.

Transient Combinations: A Flexible Approach

For clinicians who may be hesitant about administering three- or four-drug combinations, Dr. Blagosklonny suggests a flexible approach: a sequence of transient two-drug combinations. This strategy involves alternating between different combinations, such as osimertinib and gefitinib, followed by osimertinib and afatinib, and so on, effectively covering all potential resistance mechanisms while maintaining a manageable treatment regimen.

Extending the Paradigm: MET-Driven NSCLC

The insights gleaned from EGFR-driven NSCLC can be applied to other molecular subtypes, such as MET exon 14 skipping mutation (METex14)-driven NSCLC. Dr. Blagosklonny’s personal experience with this condition underscores the importance of preemptive combinations in this setting as well.

While the selective MET inhibitor capmatinib demonstrated remarkable efficacy in treating Dr. Blagosklonny’s brain metastases, resistance tends to emerge within a year, often driven by secondary mutations like D1228 and Y1230. To combat this, a preemptive combination of capmatinib, afatinib (to target EGFR and HER2 alterations), and cabozantinib (a type II MET inhibitor effective against resistance mutations) could potentially prevent up to 50% of resistance mechanisms, prolonging progression-free survival for a significant proportion of METex14-driven NSCLC patients.

Overcoming Hurdles: The Path Forward

Despite the promise of preemptive combinations, challenges remain. The development of novel targeted therapies and the exploration of immune checkpoint inhibitors in combination with these regimens offer exciting avenues for future research. Additionally, refining clinical trial designs to incorporate precision medicine approaches and tailored combination strategies will be crucial in translating these concepts into tangible benefits for patients.

Conclusion: A Paradigm Shift in Cancer Care

Dr. Blagosklonny’s perspective on preemptive combinations represents a paradigm shift in the treatment of lung cancer and potentially other malignancies. By proactively targeting resistance mechanisms before they can take hold, this approach offers a glimmer of hope for prolonging progression-free survival and improving outcomes for patients grappling with this disease. As research continues to unravel the complexities of cancer resistance, preemptive combinations may pave the way for a future where we can stay one step ahead of cancer.

Click here to read the full research perspective in Oncotarget.

Oncotarget is an open-access, peer-reviewed journal that publishes primarily oncology-focused research papers. These papers are available to readers (at no cost and free of subscription barriers) in an open-access and continuous publishing format at Oncotarget.com

Oncotarget is indexed and archived by PubMed/Medline, PubMed Central, Scopus, EMBASE, META (Chan Zuckerberg Initiative) (2018-2022), and Dimensions (Digital Science).

Click here to subscribe to Oncotarget publication updates.

For media inquiries, please contact media@impactjournals.com.

New Drug May Boost Effectiveness of Glioblastoma Treatment

In a new study, researchers investigated the activity of gartisertib, a potent ATR inhibitor, alone and in combination with standard therapy in multiple glioblastoma cell lines.

Glioblastoma is a type of brain cancer that is very aggressive and difficult to treat. The current standard treatment involves surgery, radiation therapy, and chemotherapy with a drug called temozolomide (TMZ). However, many glioblastoma cells can resist the DNA-damaging effects of TMZ and radiation by activating a mechanism called the DNA damage response (DDR). This mechanism, while beneficial in normal cells, is detrimental to cancer therapy because it allows cancer cells to repair damage and continue to grow and divide. There is a need to counteract this mechanism in glioblastoma cancer cells.

In a new study, researchers Mathew Lozinski, Nikola A. Bowden, Moira C. Graves, Michael Fay, Bryan W. Day, Brett W. Stringer, and Paul A. Tooney from University of Newcastle, Hunter Medical Research Institute, GenesisCare, QIMR Berghofer Medical Research Institute, and Griffith University found that a drug called gartisertib may overcome this resistance by inhibiting a key protein involved in the DDR, called ataxia-telangiectasia and Rad3-Related protein (ATR). On January 16, 2024, the researchers published their new research paper in Oncotarget’s Volume 15, entitled, “ATR inhibition using gartisertib enhances cell death and synergises with temozolomide and radiation in patient-derived glioblastoma cell lines.”

“Here, we investigated the activity of gartisertib, a potent ATR inhibitor, alone and in combination with TMZ and/or RT in 12 patient-derived glioblastoma cell lines.”

The Study

In this study, the team tested the effects of gartisertib alone and in combination with TMZ and radiation in 12 patient-derived glioblastoma cell lines. They found that gartisertib alone reduced the viability of glioblastoma cells, and that the sensitivity was associated with the frequency of DDR mutations and the expression of genes involved in the G2 phase of the cell cycle (the phase where cells prepare for division and check for DNA damage). The researchers also found that gartisertib enhanced the cell death induced by TMZ and radiation, and that the combination was more synergistic than TMZ and radiation alone. 

Interestingly, gartisertib was more effective in glioblastoma cells that had unmethylated MGMT promoters and were resistant to TMZ and radiation. (MGMT is a gene that encodes an enzyme that can reverse the damage caused by TMZ, and its promoter is a region that controls its expression. Methylation is a chemical modification that can silence genes, so unmethylated MGMT promoters mean higher MGMT expression and more resistance to TMZ.) The researchers also analyzed the gene expression changes in glioblastoma cells treated with gartisertib, and found that the drug upregulated pathways related to the innate immune system. The researchers speculated that gartisertib may trigger an immune response against glioblastoma cells, which could enhance the anti-tumor effects of the drug.

“We showed that gartisertib alone potently reduced the cell viability of glioblastoma cell lines, where sensitivity was associated with the frequency of DDR mutations and higher expression of the G2 cell cycle pathway. ATR inhibition significantly enhanced cell death in combination with TMZ and RT and was shown to have higher synergy than TMZ+RT treatment. MGMT promoter unmethylated and TMZ+RT resistant glioblastoma cells were also more sensitive to gartisertib. Analysis of gene expression from gartisertib treated glioblastoma cells identified the upregulation of innate immune-related pathways.”

Conclusion

The study is the first to demonstrate the activity of gartisertib in patient-derived glioblastoma cell lines, and it provides evidence that ATR inhibition may be a promising strategy to improve the outcomes of glioblastoma patients. Gartisertib is a potent and selective inhibitor of ATR that has been tested in a phase 1 clinical trial for patients with advanced solid tumors. The researchers suggest that further studies are needed to evaluate the safety and efficacy of gartisertib in combination with TMZ and radiation in glioblastoma patients, and to explore the potential role of the immune system in mediating the anti-tumor effects of the drug.

“In conclusion, this study identifies gartisertib as a potent ATRi within patient-derived glioblastoma cell lines. […] Further investigation of the concept of ATR inhibition for treatment of brain tumours, especially in vivo with brain penetrant compounds, is needed to validate these findings. Lastly, ATR inhibition alters the gene expression of innate immune and inflammatory signalling pathways within glioblastoma cells, which requires additional validation and investigation as a strategy to provoke an immunomodulatory response.”

Click here to read the full research paper in Oncotarget.

Oncotarget is an open-access, peer-reviewed journal that has published primarily oncology-focused research papers since 2010. These papers are available to readers (at no cost and free of subscription barriers) in a continuous publishing format at Oncotarget.com. Oncotarget is indexed/archived on MEDLINE / PMC / PubMed.

Click here to subscribe to Oncotarget publication updates.

For media inquiries, please contact media@impactjournals.com.

How Osteopontin Stimulates Mitochondrial Biogenesis and Cancer Metastasis

In this new study, researchers investigated the role of Osteopontin splice variants in cancer metastasis.

Mitochondrial biogenesis, the process of increasing the size and number of mitochondria within cells, plays a crucial role in cancer metastasis. Metastasizing cells exhibit a unique metabolism that differs from the well-known Warburg effect observed in primary tumors. While primary tumors primarily rely on glycolysis for energy production, metastatic cells rely on oxidative phosphorylation and ATP generation for short-term energy needs. However, over longer time frames, mitochondrial biogenesis becomes a prominent feature in the success of metastasis.

In a new study, researchers Gulimirerouzi Fnu and Georg F. Weber from the University of Cincinnati’s James L. Winkle College of Pharmacy investigate the connection between short-term oxidative metabolism and long-term mitochondrial biogenesis in cancer metastasis. They hypothesized that Osteopontin splice variants, specifically Osteopontin-c, stimulate an increase in mitochondrial size through the activation of specific signaling mechanisms. On December 1, 2023, their new research paper was published in Oncotarget, entitled, “Osteopontin induces mitochondrial biogenesis in deadherent cancer cells.”

“Over longer time frames, mitochondrial biogenesis becomes a pronounced feature and aids metastatic success. It has not been known whether or how these two phenomena are connected. We hypothesized that Osteopontin splice variants, which synergize to increase ATP levels in deadherent cells, also increase the mitochondrial mass via the same signaling mechanisms.”

The Role of Osteopontin Variants in Mitochondrial Biogenesis

Deadhesion, the process of detaching cancer cells from the extracellular matrix, is known to induce metabolic reprogramming and promote cancer cell survival in circulation. Osteopontin (OPN), a cytokine produced by cancer cells, has been implicated in tumor progression and the development of metastases. It mediates tumor cell survival and expansion under deadherent conditions, making it an ideal candidate for studying the mechanisms behind mitochondrial biogenesis. The authors of the research paper focused on two Osteopontin splice variants, Osteopontin-a and Osteopontin-c, and their effects on mitochondrial biogenesis.

Through their experiments with breast tumor cells, the authors found that both Osteopontin-a and Osteopontin-c contribute to mitochondrial biogenesis in deadherent cells. However, Osteopontin-c was more effective in stimulating an increase in mitochondrial size compared to Osteopontin-a. The authors also observed that the autocrine effects of Osteopontin variants are critical for the survival and anchorage-independence of disseminating malignant cells.

The Role of CD44v and SLC7A11 in Osteopontin Signaling

To further elucidate the mechanism behind Osteopontin-induced mitochondrial biogenesis, the authors investigated the receptors involved in Osteopontin signaling. They focused on CD44, a cell surface receptor known to interact with Osteopontin, and its variant CD44v. The authors found that Osteopontin-induced mitochondrial biogenesis is mediated via the binding of Osteopontin to CD44v.

Additionally, the authors discovered that the chloride-dependent cystine-glutamate transporter SLC7A11 plays a crucial role in Osteopontin signaling. The upregulation and co-ligation of SLC7A11, along with CD44v, leads to the activation of PGC-1, a known inducer of mitochondrial biogenesis. Surprisingly, the authors found that peroxide, an important intermediate in this signaling cascade, acts upstream of PGC-1 and is likely produced as a consequence of SLC7A11 recruitment and activation.

In Vivo Implications and Therapeutic Targets

To validate the relevance of their findings in clinical settings, the authors analyzed gene expression profiles in breast cancer metastases and metastases from other types of cancers. They identified the master regulator of mitochondrial biogenesis, PPARG, as well as its downstream effectors NRF1 and BACH1, to be upregulated in various metastases. These findings suggest that the Osteopontin-induced activation of PGC-1 and subsequent mitochondrial biogenesis may play a crucial role in cancer metastasis.

The authors also conducted in vivo experiments using mouse models. They observed that suppression of the biogenesis-inducing mechanisms led to a reduction in disseminated tumor mass. These findings not only confirm the functional connection between short-term oxidative metabolism and long-term mitochondrial biogenesis in cancer metastasis but also provide potential mechanisms and targets for treating cancer metastasis.

Conclusion

This study provides valuable insights into the role of Osteopontin splice variants in regulating mitochondrial biogenesis in metastatic cancer cells. The researchers demonstrated that Osteopontin-c stimulates an increase in mitochondrial size through the activation of specific signaling mechanisms involving CD44v and SLC7A11. These findings have significant implications for understanding the metabolic adaptations of metastatic cancer cells and suggest potential targets for therapeutic interventions. Further research is needed to fully elucidate the intricate signaling pathways involved in Osteopontin-induced mitochondrial biogenesis and to explore the clinical applications of these findings in cancer treatment.

“This study confirms a functional connection between the short-term oxidative metabolism and the longer-term mitochondrial biogenesis in cancer metastasis – both are induced by Osteopontin-c. The results imply possible mechanisms and targets for treating cancer metastasis.”

Click here to read the full research paper in Oncotarget.

Oncotarget is an open-access, peer-reviewed journal that has published primarily oncology-focused research papers since 2010. These papers are available to readers (at no cost and free of subscription barriers) in a continuous publishing format at Oncotarget.com. Oncotarget is indexed/archived on MEDLINE / PMC / PubMed.

Click here to subscribe to Oncotarget publication updates.

For media inquiries, please contact media@impactjournals.com.

Immunotherapy Response in Primary vs Metastatic Pancreatic Cancer

In this editorial, researchers delve into the immunotherapeutic challenges posed by the tumor microenvironment and liver metastasis in pancreatic cancer.

Pancreatic ductal adenocarcinoma (PDA), a common type of pancreatic cancer, has proven to be largely resistant to immunotherapy, a treatment that uses the body’s immune system to fight cancer. Despite numerous successful pre-clinical trials using sophisticated PDA mouse models, clinical trials have failed to show a significant improvement in survival.

In a recent editorial, researchers Brian Diskin, Sarah Schwartz and George Miller from Trinity Health of New England shed light on the complex interplay between the immune system and pancreatic cancer. Their paper was published in Oncotarget on April 24, 2023, and entitled, “The critical immune basis for differential responses to immunotherapy in primary versus metastatic pancreatic cancer.”

Tumor Microenvironment and Liver Metastasis: Challenges in Pancreatic Cancer

The authors attribute PDA immunotherapy resistance to the unique characteristics of the tumor microenvironment (TME). The TME is often hypoxic and fibrotic, making it inaccessible to immune cells. Furthermore, the immune cells that do infiltrate the TME often have tolerogenic features, meaning they are more likely to tolerate the presence of cancer cells rather than attack them.

PDA most commonly metastasizes to the liver, an organ known for its immune tolerance. The liver is home to a diverse array of innate immune populations, including NK cells, Kupfer cells, NKT cells, and double negative T cells. Despite this, the liver is the most common location for metastasis from gastrointestinal cancers.

“It is an unfortunate fact that all failed clinical trials assessing immunotherapeutic efficacy were conducted in metastatic PDA, whereas basic preclinical investigations are usually performed in primary PDA using genetically engineered mouse models. We postulated that this dichotomy may explain the gap between preclinical promise and ultimate clinical failure.”

Divergent Responses to Immunotherapy: Primary vs. Metastatic 

“The potentially divergent responses to immunotherapy in the respective environments of primary versus metastatic PDA within the same host has not been well-studied.”

The authors highlight the lack of research into the potentially divergent responses to immunotherapy in primary versus metastatic PDA. They argue that this gap in knowledge may explain the discrepancy between the promising results of pre-clinical trials and the disappointing outcomes of clinical trials.

In their research, they discovered that the TMEs of primary PDA and liver metastases differ significantly, and this difference plays a critical role in the site-specific response to immunotherapy. They found that liver metastases are uniquely resistant to immunotherapies, in stark contrast to the immunotherapeutic responsiveness of primary PDA.

“We discovered that the respective TMEs of primary PDA and liver metastases differ markedly and this fact plays a critical role in dictating site-specific PDA response to immunotherapy [6].”

The Role of B Cells

The researchers identified B cells as a key player in this differential response. They found that B cells constituted approximately 25% of the tumor-infiltrating lymphocytes in metastatic PDA liver deposits, compared to approximately 10% in primary PDA. They also discovered a novel population of CD24+CD44–CD40– B cells in the metastatic liver, which is recruited to the metastatic milieu by Muc1hiIL18hi tumor cells.

“[…] by targeting B cells or blocking CD200/BTLA, we demonstrated enhanced macrophage and T-cell immunogenicity, which enabled immunotherapeutic efficacy of liver metastases.”

However, the authors note that primary PDA sites lack this b-cell population. Instead, they are characterized by macrophages and effector T cells that have a higher ability to provoke an immune response. This makes their immunotherapeutic responsiveness far more robust than metastatic liver PDA.

Conclusion

This research underscores the importance of understanding the immune basis of differential responses to immunotherapy in primary versus metastatic pancreatic cancer. It highlights the need for further research into the role of the TME and immune cells like B cells in the response to immunotherapy. Such insights could pave the way for more effective treatments for this challenging disease.

“[…] our data suggest that models of primary PDA are poor surrogates for evaluating immunity or treatment response in advanced disease.”

Click here to read the full editorial paper in Oncotarget.

Oncotarget is an open-access, peer-reviewed journal that has published primarily oncology-focused research papers since 2010. These papers are available to readers (at no cost and free of subscription barriers) in a continuous publishing format at Oncotarget.com. Oncotarget is indexed/archived on MEDLINE / PMC / PubMed.

Click here to subscribe to Oncotarget publication updates.

For media inquiries, please contact media@impactjournals.com.

Whole-Genome Doubling and Aneuploidy in Human Cancer

In a new editorial paper, researchers from Tel Aviv University discuss a recent study exploring how whole-genome doubling shapes the aneuploidy landscape of human cancers.

Whole-genome doubling (WGD) and aneuploidy are two common genomic alterations that occur in human cancers. WGD is a macro-evolutionary event that results in the duplication of the entire genome, while aneuploidy is a micro-evolutionary event that results in the gain or loss of individual chromosomes or chromosome arms. Both WGD and aneuploidy can have profound effects on cellular physiology, gene expression and genome stability, and are associated with tumor initiation, progression and drug resistance.

However, the relationship between WGD and aneuploidy is complex and context-dependent. In a new editorial paper, researchers Kavya Prasad and Uri Ben-David from Tel Aviv University discuss a recent study exploring how WGD shapes the aneuploidy landscape of human cancers. Their editorial was published in Oncotarget on April 26, 2023, and entitled, “A balancing act: how whole-genome doubling and aneuploidy interact in human cancer.”

“It is known that tumors that have undergone WGD are more permissive to aneuploidy, but whether WGD also affects aneuploidy patterns has remained an open question.”

The Study

The researchers analyzed 5,586 clinical tumor samples that had not undergone WGD (WGD-) and 3,435 tumors that had (WGD+) from The Cancer Genome Atlas (TCGA), across 22 tumor types. They found that WGD+ tumors were characterized by more promiscuous aneuploidy patterns, in line with increased aneuploidy tolerance. The relative prevalence of recurrent aneuploidies decreased in WGD+ tumors, suggesting that WGD+ tumors are more tolerant to aneuploidy than WGD- tumors. 

The genetic interactions between chromosome arms differed between WGD- and WGD+ tumors, resulting in different co-occurrence and mutual exclusivity patterns. The proportion of whole-chromosome aneuploidy was significantly higher in WGD+ tumors than in WGD- tumors, indicating that different mechanisms of aneuploidy formation are dominant in WGD- and WGD+ tumors. The authors proposed that whole-chromosome missegregation is more prevalent in WGD+ tumors due to increased centrosome amplification and multipolar mitoses.

To validate their findings from the clinical tumor analysis, the authors used human cancer cell lines that reproduced the WGD/aneuploidy interactions observed in vivo. They also induced WGD in human colon cancer cell lines by treating them with a microtubule-stabilizing drug, and followed the evolution of aneuploidy in the isogenic WGD+/WGD- cells under standard or selective conditions. These experiments confirmed that WGD alters the aneuploidy landscape of human cancer cells, and revealed a causal link between WGD and altered aneuploidy patterns.

“We note that these experiments were not powered to assess the associations between specific aneuploidies, which remain to be experimentally validated in future studies.”

Conclusions & Future Studies

In their editorial, the researchers note that their study prompts questions about how different tetraploidization methods affect aneuploidy landscapes. They used cytokinesis failure for cell lines, but processes like cell fusion could impact aneuploidy differently. Further research should explore how selection pressures shape karyotype evolution, considering factors beyond tissue type. Analyzing intra-chromosomal arm-level vs. whole-chromosomal aneuploidies may identify cancer-driving chromosome arms. Overall, this study provides novel insights into how WGD and aneuploidy interact in human cancer, and how this interaction affects tumor evolution. The authors suggest that the interaction between WGD and aneuploidy is a major contributor to tumor heterogeneity, adaptation, and drug resistance, and that targeting this interaction could be a promising therapeutic strategy.

“In summary, our recent study shows that WGD contributes to aneuploidy formation in human tumors in both qualitative and quantitative ways. Hence, we propose that the WGD status of the tumor should be taken into account when examining the tumorigenic role of individual aneuploidies or aneuploidy patterns. In general, WGD should be considered in the study of aneuploidy landscapes in human cancers.”

Click here to read the full editorial in Oncotarget.

Oncotarget is an open-access, peer-reviewed journal that has published primarily oncology-focused research papers since 2010. These papers are available to readers (at no cost and free of subscription barriers) in a continuous publishing format at Oncotarget.com. Oncotarget is indexed/archived on MEDLINE / PMC / PubMed.

Click here to subscribe to Oncotarget publication updates.

For media inquiries, please contact media@impactjournals.com.

Targeting Ras in Cancer Therapies: Advances in Protein Engineering

In a new review, researchers from The Hebrew University of Jerusalem discuss the challenges associated with targeting Ras proteins and how protein engineering has emerged as a promising method to overcome these challenges.

Figure 3: Various scaffolds utilized to engineer binders to Ras and their binding epitopes. Targeting Ras in Cancer Therapies: Advances in Protein Engineering
Figure 3: Various scaffolds utilized to engineer binders to Ras and their binding epitopes.

Ras plays a crucial role in controlling various cellular processes by switching between active (Ras-GTP) and inactive (Ras-GDP) states with the help of specific molecules. In its active form, Ras interacts with multiple effector proteins, initiating downstream events. Humans have three Ras genes, resulting in four isoforms that have distinct expression patterns and unique functions in different tissues. Posttranslational modifications target Ras to the cell membrane, where it can form dimers and interact with effectors through common domains. Ras mutations, commonly found in pancreatic, colorectal and lung cancers, lock Ras in an active state, promoting continuous cell division and proliferation. Ras signaling disruption occurs through reduced catalytic activity, altered effector binding and decreased affinity for other regulatory proteins.

Although Ras has been considered difficult to target, recent advancements have identified potential binding pockets that can be addressed by small molecules, peptidomimetics and proteins. Inhibitors designed to covalently bind to the Ras G12C mutant have shown promise, leading to FDA-approved drugs for specific lung cancers. Additionally, protein-based inhibitors that target Ras and its interactions with effectors, regulatory proteins and guanine nucleotide exchange factors offer alternative strategies for therapeutic intervention. These developments have challenged the notion that Ras is “undruggable” and highlight the potential for effective treatments against various cancer types.

On July 1, 2023, researchers Atilio Tomazini and Julia M. Shifman from The Hebrew University of Jerusalem published a new review paper in Oncotarget, entitled, “Targeting Ras with protein engineering.” The authors provide an overview of the challenges associated with targeting Ras proteins with small molecules and discuss how protein engineering has emerged as a promising method to overcome these challenges.

“While the development of small-molecule Ras inhibitors has been reviewed elsewhere [40], we focus our review on protein-based Ras inhibitors, describing the methods for their engineering, various scaffolds used for inhibitor design, and prospects for delivery of the designed Ras inhibitors into the cellular cytoplasm, where Ras is located.”

Protein Engineering

Protein scaffolds offer alternative approaches to small molecule drugs for engineering protein-based inhibitors. Unlike small molecules, protein domains can bind to targets through large surface areas, providing high affinity and specificity. Antibodies, natural protein effectors and novel binding domains are commonly used as protein scaffolds. Antibodies can be engineered into smaller versions to overcome limitations, while natural effectors can be modified to enhance binding affinity. Novel binding domains, unrelated to the target protein, possess structural robustness and can be evolved to exhibit strong binding. All three classes of protein scaffolds have been utilized to engineer Ras binders and explore strategies to inhibit Ras oncogenesis.

“Interestingly, all classes of protein scaffolds, including antibodies, natural effectors, and novel binding domains, have been utilized for engineering of Ras binders, allowing scientists to target various sites on the Ras surface and to explore different strategies for inhibiting Ras oncogenesis […].”

Methods for engineering protein inhibitors can be categorized into experimental directed evolution and computational design, or a combination of both. Experimental techniques involve display technologies such as phage display, yeast surface display, ribosome display, and mRNA display. These methods allow for the construction of combinatorial libraries of protein mutants, which are then screened using the target protein as a selection “bait.” The selected binders are sequenced to identify high-affinity mutants. Negative selection steps can be incorporated to enhance specificity by eliminating binders to unwanted targets. The number of mutants that can be assayed depends on the display technology used, with each approach having its limitations.

In addition to experimental approaches, computational methods have been proposed for protein binder design. Computational design enables rational targeting of specific binding epitopes on the target protein. However, computationally designed binders often have weak initial binding affinities and require affinity maturation through experimental techniques. Computational methods have been successful in designing focused libraries for yeast surface display experiments, where small libraries of protein mutants are designed based on computational predictions. This approach narrows down the choices to the most promising mutants, facilitating directed evolution experiments. By combining computational and experimental approaches, protein inhibitors with superior affinity and specificity have been developed.

“We have summarized all the described engineered Ras protein-based binders and their properties in Table 1.”

The Future of Intracellular Transport for Ras Inhibitors

Efficient delivery of molecules that bind to intracellular Ras proteins is essential for suppressing pro-cancer pathways and promoting anti-cancer activities. To overcome the challenge of crossing the cell membrane, different strategies have emerged. One approach involves utilizing short cell-penetrating peptides (CPPs) that can be fused to the desired protein, allowing entry into cells through direct translocation or endocytosis. However, improving the release of cargo proteins from endosomes remains a hurdle. Supercharging proteins with positively charged surfaces or leveraging bacterial toxins with intrinsic delivery mechanisms are alternative methods for intracellular protein delivery. Additionally, coupling cargo proteins to nanoparticles or employing mRNA delivery systems have shown promise, although they have their own limitations.

These protein delivery techniques have been explored for targeting Ras inhibitors. For instance, a human IgG1 antibody was engineered to selectively bind to Ras-GTP, inhibiting downstream signaling. Fusion of Ras binding domains to CPPs demonstrated competitive inhibition of Ras/effector interactions. Furthermore, optimized bacterial secretion systems and lipid nanoparticle-encapsulated mRNA platforms have been employed for efficient intracellular delivery of Ras-binding molecules. These advancements open up possibilities for targeted cancer therapies and disease treatments by enabling effective delivery of Ras binders to their intracellular target, thus influencing cancer-related signaling pathways.

Conclusions

In summary, targeting Ras proteins, despite their historically challenging nature, has seen significant progress in recent years. Small molecules, peptidomimetics and protein-based inhibitors have emerged as potential strategies for inhibiting Ras oncogenesis. Protein engineering, utilizing various protein scaffolds such as antibodies, natural effectors and novel binding domains, offers alternative approaches to traditional small molecule drugs.

Experimental directed evolution and computational design, alone or in combination, have facilitated the development of high-affinity and specific protein inhibitors. Furthermore, the efficient intracellular delivery methods described above hold promise for targeted cancer therapies by effectively delivering Ras binders to their intracellular targets. These advancements challenge the perception of Ras as “undruggable” and provide hope for the development of effective treatments for various cancer types.

“These strategies should be utilized in future to examine the beneficial activity of Ras-binders and inhibitors and should further facilitate the development of protein-based Ras therapeutics.”

Click here to read the full review in Oncotarget.

ONCOTARGET VIDEOS: YouTube | LabTube | Oncotarget.com

Oncotarget is an open-access, peer-reviewed journal that has published primarily oncology-focused research papers since 2010. These papers are available to readers (at no cost and free of subscription barriers) in a continuous publishing format at Oncotarget.com. Oncotarget is indexed/archived on MEDLINE / PMC / PubMed.

Click here to subscribe to Oncotarget publication updates.

For media inquiries, please contact media@impactjournals.com.