Author: Kathryn Atkins

Trending With Impact: Dual Requirement in Stem Cell Leukemia/Lymphoma

For the first time, researchers revealed the protein interactome, phospho-proteome and total proteome for the oncogenic fusion protein BCR-FGFR1.

Figure 6: Signaling pathways activated by BCR-FGFR1.
Figure 6: Signaling pathways activated by BCR-FGFR1.

The Trending With Impact series highlights Oncotarget publications attracting higher visibility among readers around the world online, in the news, and on social media—beyond normal readership levels. Look for future science news about the latest trending publications here, and at Oncotarget.com.

Listen to an audio version of this article

Chromosomes are found in the nucleus of cells and consist of proteins and tightly coiled strands of DNA. During cell division, chromosomal translocations can occur while the chromosomes are being copied. This type of mutation can mean that an entire chromosome has moved to another location, or that a chromosome has broken, usually into two pieces, and moved to another site. Some translocations are harmless, but others can lead to aberrant cell proliferation and cancer.

“Over the last half century, chromosomal translocations encoding functional oncogenic proteins have been identified as drivers of multiple cancers, and account for 20% of all malignant neoplasms [1, 2].”

For example, the t(8;22)(p11;q11) chromosomal translocation leads to the initiation of an oncogenic fusion protein called the Breakpoint Cluster Region Fibroblast Growth Factor Receptor 1 (BCR-FGFR1). BCR-FGFR1 is a single driver of 8p11 myeloproliferative syndrome, which is also known as stem cell leukemia/lymphoma (SCLL).

“Stem cell leukemia/lymphoma (SCLL) exhibits distinct clinical and pathological features characterized by chromosomal translocations involving the FGFR1 gene at chromosome 8p11.”

In a trending new study, researchers from the University of California San Diego and Sanford Burnham Prebys Medical Discovery Institute examined mutations in PLCγ1 and Grb2 binding sites individually and when combined together in a double mutant within BCR-FGFR1. On May 11, 2022, the research paper was published in Oncotarget and entitled, “Proteomic analysis reveals dual requirement for Grb2 and PLCγ1 interactions for BCR-FGFR1-Driven 8p11 cell proliferation.”

The Study

In this study, the researchers used quantitative proteomic analyses to identify the crucial protein-to-protein interactions that may be necessary to activate BCR-FGFR1. The team used NIH3T3, HEK293T and 32D cells to assay five types of mutations: wild type BCR-FGFR1, a kinase-dead variant of BCR-FGFR1, a derivative of BCR-FGFR1 that contained a single mutation abolishing the Grb2 interaction site, a derivative of BCR-FGFR1 that contained a single mutation abolishing the PLCγ1 interaction site, and a double mutation that abolished both interaction sites (BCR(Y177F)-FGFR1(Y766F)).

“These data demonstrate that inhibition of either signaling pathway alone fails to inhibit hematopoietic cell proliferation, and demonstrate a dual requirement for Grb2 and PLCγ1 interactions with BCR-FGFR1 for proliferation.”

When either Grb2 or PLCγ1 signaling pathway was mutated, BCR-FGFR1 activity was decreased, but never abolished. However, when both Grb2 and PLCγ1 interactions were mutated, both cell transformation and proliferation were inhibited. The team demonstrated that BCR-FGFR1 dually relies on Grb2 and PLCγ1 for biological activity and the activation of cell signaling pathways. The researchers also found that the PLCγ1 inhibitor U73122 revealed that PLCγ1 is a potential therapeutic target for BCR-FGFR1-driven hematologic malignancies. In addition, the irreversible FGFR inhibitor futibatinib suppressed downstream signaling and cell transformation. 

“We demonstrate here that BCR-FGFR1 relies dually on the small adapter protein, Grb2, and the phospholipase, PLCγ1, for biological activity and the activation of cell signaling pathways (summarized in Figure 6).”

Figure 6: Signaling pathways activated by BCR-FGFR1.
Figure 6: Signaling pathways activated by BCR-FGFR1.

Conclusion

“Our work highlights the importance of sequencing based, mutation-specific therapies for FGFR1 induced hematologic malignancies.”

This study provides new insight into the potential molecular mechanisms underlying BCR-FGFR1 activity and identifies PLCγ1 as a therapeutic target for leukemia/lymphoma patients with this particular mutation. Future studies will be necessary to validate these findings in animal models and clinical trials. However, this study lays the groundwork for the development of new and more targeted leukemia/lymphoma therapies.

“These data unravel essential roles of Grb2 and PLCγ1 in BCR-FGFR1 mediated oncogenic growth and suggest the importance of further investigation into PLCγ1 as a potential therapeutic target in treating SCLL.”

Click here to read the full research paper published by Oncotarget.

ONCOTARGET VIDEOS: YouTube | LabTube | Oncotarget.com

Oncotarget is an open-access journal that publishes primarily oncology-focused research papers in a continuous publishing format. These papers are available at no cost to readers on Oncotarget.com. Open-access journals have the power to benefit humanity from the inside out by rapidly disseminating information that may be freely shared with researchers, colleagues, family, and friends around the world.

For media inquiries, please contact media@impactjournals.com.

What Causes Chemo Brain?

​​Researchers investigated potential therapeutic culprits of “chemo brain” in a trending new paper published by Oncotarget.

What Causes Chemo Brain?

The Trending With Impact series highlights Oncotarget publications attracting higher visibility among readers around the world online, in the news, and on social media—beyond normal readership levels. Look for future science news about the latest trending publications here, and at Oncotarget.com.

Listen to an audio version of this article

A type of mental fog—known as “chemo brain”—is widely experienced by patients who have undergone cancer treatment. Cancer research institutions define chemo brain as impaired cognition, including cloudiness, memory loss and/or lack of concentration, that occurs before, during and/or after cancer treatment. This condition can negatively impact quality of life in a significant way. Chemo brain not only affects recovering individuals but also their loved ones, who often must take on additional caregiving responsibilities. Despite the name, chemotherapeutic drugs may not be the only treatments responsible for chemo brain. 

A chemotherapy protective drug called amifostine is commonly used in patients and paired with chemotherapeutic agents. Amifostine functions to protect healthy cells from DNA double strand breaks (DSBs) induced by chemotherapy. Another commonly prescribed cancer treatment is called etoposide, which is a chemotherapeutic drug that also targets DSBs. Etoposide, on the other hand, functions to increase DSBs in cancer cells. Recently, researchers have suggested that DSBs could play a role in learning, memory and immediate early gene (IEG) expression. The activity of IEGs can be used to identify neural circuits involved in learning and memory processes.

“Despite their wide clinical use, there is little information about how amifostine and etoposide affect learning and memory.”

THE STUDY

Researchers from Oregon Health and Science University conducted a novel study to observe the isolated effects of these common DSB-altering agents on learning, memory and IEG expression. Systemic injections of amifostine and etoposide were examined in both male and female mice. Their research paper was published by Oncotarget in January of 2022, and entitled, “Common cancer treatments targeting DNA double strand breaks affect long-term memory and relate to immediate early gene expression in a sex-dependent manner.”

“In this study, we investigated the effects of amifostine and etoposide on hippocampus-dependent and -independent fear conditioning [23] and IEG expression in male and female C57Bl/6J mice.”

Male and female mice were systemically dosed with either saline or the one of the cancer treatments, and then trained in fear conditioning. Markers of contextual and cued memory were tested 24 hours and two weeks post-training. The study consisted of four total experiments. The first experiment examined the effects of pre-training cancer treatment injections on long-term memory. The second experiment examined the effects of post-training cancer treatment injections on long-term memory. The third experiment examined the effects of pre-training injections on cFos and Nicotinamide adenine dinucleotide phosphate (NADPH). (Increasing and inhibiting the activity of NADPH oxidase impairs learning and memory.) The fourth experiment examined the effects of pre-training cancer treatment injections on DSBs.

“Hippocampal cFos and ΔFosB are essential for contextual learning and hippocampal synaptic plasticity [1213].”

RESULTS

The researchers found that pre- and post-training injections of amifostine at 107 mg/kg increased long-term contextual, but not cued, freezing in male mice. Amifostine decreased hippocampal DSBs, although it did not not change cFos levels in either male or female mice. The researchers observed that post-training injections of etoposide led to long-term decreases in both contextual and cued freezing among female mice. Etoposide decreased hippocampal NADPH in females and hippocampal DSBs in both sexes. Overall, etoposide decreased hippocampal γH2Ax (a DSB repair marker), hippocampal NADPH and cortical cFos in a sex-dependent manner.

“Post-training injections of amifostine affected long-term contextual fear memory; etoposide affected contextual and cued fear memory.”

CONCLUSION

“Our results suggest that amifostine and etoposide have distinct effects on learning and memory dependent on sex and timing of administration.”

The researchers assessed the effects of these DSB-altering agents and found results suggesting that they have a direct impact on learning and memory. Their impacts varied on the basis of sex and timing of administration before or after training. The researchers suggest that future studies examine these effects on specific brain regions to clarify the underlying mechanisms driving learning and memory changes. 

“Newer analogs of these drugs, such as PrC-210 [45], might reduce these side effects and improve patients’ quality of life. Future investigations are warranted to determine the role of DSBs in encoding, retrieval, and reconsolidation, and further our understanding of learning and memory processes in health and disease.”

Click here to read the full research paper published by Oncotarget.

ONCOTARGET VIDEOS: YouTube | LabTube | Oncotarget.com

Oncotarget is a unique platform designed to house scientific studies in a journal format that is available for anyone to read without a paywall making access more difficult. This means information that has the potential to benefit our societies from the inside out can be shared with friends, neighbors, colleagues, and other researchers, far and wide.

For media inquiries, please contact media@impactjournals.com.

Scientific Integrity

Chemical in Sunscreen Promotes Breast Cancer in Diet-Dependent Manner

The bioactivity of oxybenzone—a harmful chemical often found in sunscreens—was examined within mouse models of breast cancer in high- and low-fat dietary contexts.

sunscreen
Listen to an audio version of this article

Oxybenzone (benzophenone-3; BP-3) is a toxic endocrine-disrupting chemical (EDC). Alarmingly, this chemical has been identified as a common ingredient in some brands of sunscreen. Oxybenzone can often be found in humanshousehold dustfish and, due to its widespread human use, the water environment—causing harm to coral reefs and other murine life. Previous studies have shown that environmental toxins and estrogenic chemicals have emerged as potential culprits in the promotion of breast cancer. Furthermore, oxybenzone has been known to have estrogenic and anti-estrogenic properties.

“Although BP-3 has a very short half-life, its presence is widespread in human urine [9], in as much as 98% of the general U.S. population [13].”

Researchers from the Breast Cancer and the Environment Research Program at Michigan State University studied the diet-dependent effects of oxybenzone in mouse models of mammary tumorigenesis during puberty and adulthood. Their paper was published by Oncotarget in 2020, and entitled, “Benzophenone-3 promotion of mammary tumorigenesis is diet-dependent.” 

“We [previously] demonstrated enhancement of mammary tumorigenesis by a diet high in saturated animal fat (HFD) [58]. Thus, examination of the activity of EDCs in a dietary context may provide additional insight into the potential role of EDCs in promoting breast cancer.”

The Study

In the current study, the team employed the Trp53null transplantation of a basal-like breast cancer mouse model. The researchers previously demonstrated that proliferative, inflammatory and angiogenic activity in the mammary gland can be modulated by estrogen and a high-fat diet (HFD). Therefore, both pubertal and adult mice were placed on either low- or high-fat diets. After one week, study mice were ovariectomized, given time for recovery and the natural dissipation of endogenous hormones, and then treated for five days with either saline (control) or 17β-estradiol (E2). 

Next, the estrogenic or anti-estrogenic effects of oxybenzone were examined in these mice under three dietary conditions: mice fed a life-long low-fat diet (LFD), mice fed a LFD during puberty and then a HFD in adulthood (LFD-HFD) and finally, mice fed a HFD during puberty and then a LFD in adulthood (HFD-LFD). Mice in LFD-HFD and HFD-LFD groups were fed their initial diet from three to 10 weeks of age, and were then switched to the alternative diet. Half of these mice were injected with oxybenzone and the other half (control) were injected with saline.

“We found that BP-3 had complex effects that were dependent upon dietary regimen and tumor histopathology.”

Results

Consistent with their previous studies, the researchers found that most of the tumors developed were epithelial in histological composition, and few were spindle cell carcinomas. They found that oxybenzone reduced the tumorigenesis of epithelial tumors in LFD mice. The LFD-HFD combination resulted in more spindle cell tumors compared to the life-long LFD mice. Oxybenzone treatment increased the tumorigenesis of epithelial tumors in mice fed the LFD-HFD. 

“Kaplan-Meier analysis revealed that BP-3 reduced tumorigenesis of epithelial tumors in mice fed LFD (Figure 3A). On the other hand, consistent with the increased proportion of epithelial tumors, BP-3 was promotional for epithelial tumorigenesis in mice fed LFD-HFD (Figure 3C), while reducing spindle cell tumorigenesis (Figure 3D).” 

Researchers saw that proliferation was increased by oxybenzone treatment most significantly in the mammary glands of 26-week-old HFD mice. Curiously, oxybenzone treatment increased the number of lesions only in mice fed the HFD-LFD. The researchers note that, in this study and others, a “pubertal window of susceptibility” was observed, reinforcing the important notion that puberty is a highly sensitive window of time for poor diets and adverse exposures to environmental toxins. Ultimately, the team found that oxybenzone enhances estrogen-stimulated breast cancer cell proliferation in pubertal mice fed a HFD.

“Benzophenone-3 increased tumor cell proliferation, decreased tumor cell apoptosis, and increased tumor vascularity dependent on specific dietary regimen and tumor histopathology.”

Conclusion

Collectively, the researchers’ findings suggest that exposure to oxybenzone has adverse consequences in mammary tumorigenesis. The degree of severity appeared to be modulated differently among the three dietary regimens studied. Mice fed a HFD in adulthood experienced a decrease in tumor cell apoptosis and an increase in tumor vascularity and tumor cell proliferation. They note that there is future value in exploring the differences between pubertal and adult exposure to oxybenzone on a constant diet regimen.

“This points to a need for further studies of benzophenone-3 in both animal models and humans as a potential breast cancer risk factor, as well as a more general need to evaluate endocrine disrupting chemicals in varying dietary contexts.”

Click here to read the full scientific study, published by Oncotarget.

YOU MAY ALSO LIKE: More Oncotarget Videos on LabTube

Oncotarget is a unique platform designed to house scientific studies in a journal format that is available for anyone to read without a paywall making access more difficult. This means information that has the potential to benefit our societies from the inside out can be shared with friends, neighbors, colleagues, and other researchers, far and wide.

For media inquiries, please contact media@impactjournals.com.

Scientific Integrity

Trending With Impact: Unconventional Method Effectively Targets NSCLC

Researchers developed a divergent strategy to treat non-small cell lung cancer (NSCLC).

New ideas

The Trending with Impact series highlights Oncotarget publications attracting higher visibility among readers around the world online, in the news, and on social media—beyond normal readership levels. Look for future science news about the latest trending publications here, and at Oncotarget.com.

Listen to an audio version of this article

The mammalian target of rapamycin (mTOR) operates within two distinct protein complexes—mTOR complex 1 (mTORC1) and complex 2 (mTORC2). These protein complexes are not yet fully understood, as they were only recently identified in humans in 1994. What researchers do know is that mTORC1 is involved in the regulation of many cellular processes and is a key mediator of cell growth and proliferation. mTORC1 is activated by growth factor receptor signals through the PI3K–AKT and RAS–ERK mitogen-activated protein kinase (MAPK) pathways.

The PI3K/AKT/mTOR pathway may be an efficacious target in the treatment of patients with non-small cell lung cancer (NSCLC). This theory is based on the identification of particular gene mutations in NSCLC that are associated with the PI3K/AKT/mTOR pathway. However, previous studies have not yet succeeded in defining an effective monotherapy or combination of therapies that targets this pathway while improving NSCLC patient outcome. 

Researchers from Institut CuriePSL UniversityXentechBioPôle AlfortHôpital Foch, and Centre Léon Bérard designed a study using a new methodology to test treatment combinations based on specific targets identified as biomarkers of resistance to PI3K-targeting treatments, and not based on the NSCLC mutations themselves. Their trending research paper was published by Oncotarget in 2021 and entitled, “High in vitro and in vivo synergistic activity between mTORC1 and PLK1 inhibition in adenocarcinoma NSCLC.”

“Our main strategy was therefore, using a panel of NSCLC PDXs, (i) to define predictive markers of response to RAD001 therapy and (ii) to identify possible combinations of treatments that may be able to reverse RAD001 resistance.”

THE STUDY

Researchers tested RAD001/Everolimus (an mTORC1 inhibitor) in vivo using NSCLC Patient-Derived Xenografts (PDXs), which demonstrated high antitumor efficacy. They next aimed to define predictive markers of response to RAD001 using real-time quantitative RT-PCR assays.

“In order to define predictive markers of response to RAD001, we used real-time quantitative RT-PCR assays to quantify the mRNA expression of a large number of selected genes.”

The team found three significantly highly expressed and targetable genes in NSCLC tumors resistant to RAD001: PLK1, CXCR4 and AXL. They then analyzed these genes for their prognostic value among NSCLC patients that were found in the publicly available database KMPLOT. This analysis revealed that of the three genes evaluated, only one high-gene expression was correlated with a negative impact on overall survival of patients with adenocarcinoma: PLK1. Given this data, the researchers next evaluated the in vivo efficacy of RAD001 combined with a PLK1 inhibitor, volasertib, in four PDX models. The RAD001 + volasertib combination demonstrated dramatic efficacy in three of the four models.

“In all tested PDXs, except LCF29, we have observed a significant, but variable, improvement of the antitumor efficacy of RAD001 + volasertib in comparison to each monotherapy (Figure 2A).”

To define this RAD001 + volasertib drug combination’s mechanism of action, the researchers conducted a pharmacodynamics (PD) study. The team then evaluated post-therapeutic proteins involved in the cell cycle, vascularization and carbonic anhydrase IX expression. These results were then validated using in vitro studies. 

CONCLUSION

“Our determination of relevant Pi3K-based therapeutic combination(s) was not supported, by the presence of actual molecular abnormalities, nor by physician therapeutic practices, but by the identification of predictive markers of resistance to Pi3K-based monotherapies.”

In summary, the researchers conclude that their study demonstrates that inhibiting both mTORC1 and PLK1 proteins induces synergistic antitumor activity in multiple models of NSCLC. In the discussion section of this paper, the authors detailed the divergent methodology they used to come to their conclusion. 

“This methodology may promote more relevant clinical trials and avoid non-efficient combinations, inacceptable toxicities, and expensive and time-consuming studies.”

Click here to read the full research paper, published by Oncotarget.

Read the press release here

YOU MAY ALSO LIKE: More Oncotarget Videos on LabTube

Oncotarget is a unique platform designed to house scientific studies in a journal format that is available for anyone to read—without a paywall making access more difficult. This means information that has the potential to benefit our societies from the inside out can be shared with friends, neighbors, colleagues, and other researchers, far and wide.

For media inquiries, please contact media@impactjournals.com.

Trending With Impact: Promising Non-Small Cell Lung Cancer Prodrug

Researchers examined the preclinical prodrug LP-184 and its efficacy in treating non-small cell lung cancers that lack actionable targets or resistance-related genes.

3D illustration of lung cancer

The Trending with Impact series highlights Oncotarget publications attracting higher visibility among readers around the world online, in the news, and on social media—beyond normal readership levels. Look for future science news about the latest trending publications here, and at Oncotarget.com.

Listen to an audio version of this article

Between 20 and 40% of adults with non-small cell lung cancer (NSCLC) eventually go on to develop brain metastases. Over 40% of patients with NSCLC have limited treatment options due to a lack of actionable therapeutic targets. Treatment for such patients has been limited to non-targeted chemotherapy—an approach which increases the risk of developing drug-resistance due to underlying resistance-associated mutations. 

“Newer drugs that will be more potent and remain efficacious in NSCLC with such mutations could lead to better alternate or combinatorial therapies.”

Lantern Pharma (a pharmaceutical company developing targeted cancer therapies) created a new drug candidate and next generation member of the acylfulvene class of prodrugs, named LP-184. Researchers from Lantern Pharma and REPROCELL (a commercial contract research organization) conducted a study to test the anti-tumor activity of this preclinical compound in a variety of NSCLC cell lines. In 2021, Oncotarget published team’s pape, entitled, “The acylfulvene alkylating agent, LP-184, retains nanomolar potency in non-small cell lung cancer carrying otherwise therapy-refractory mutations.”

The Study

Despite LP-184’s highly-synthetic sounding name, the lead product in this acylfulvene prodrug (Illudins) is derived from, you guessed it, Jack-o-Lantern mushrooms. 

“Acylfulvenes have been derived from cytotoxic agents called Illudins, isolated from Jack-o-Lantern mushroom (Omphalotus illudens), that retain and improve the cytotoxicity of parent Illudins for use as anticancer agents.”

The anti-tumor activity of this compound is based on activation through reductive mechanisms, mediated by enzymes such as Prostaglandin Reductase 1 (PTGR1). PTGR1 is known to be upregulated in some tumors, including in tumors with mutations in KEAP1. LP-184 sensitivity was investigated in NSCLC cell lines with individual or combined mutations in KEAP1, KRAS, TP53, and STK11. 

“There is a high unmet need for effective therapies for NSCLC harboring mutations in these genes that have not only been considered undruggable till date but also are associated with loss of efficacy or resistance to multiple therapeutic strategies, at least in frontline regimens.”

The researchers tested LP-184 in vitro in 19 primary and metastatic NSCLC cell lines to determine the range of NSCLC settings that this compound might work best in. Clinical data analyses were also conducted by the researchers to predict tumor responsiveness to LP-184. In addition, the compound was examined in two mouse models of primary lung cancer. Mouse models were tested for sensitivity to LP-184 in both two- and three-dimensional culture systems.

“We sought to assess LP-184 activity in a panel of selected NSCLC adenocarcinoma cell lines, determine associations between genomic and transcriptomic profiles and responses of cell lines tested, and compare in vitro potency of LP-184 with that of approved chemotherapy agents.”

Conclusion

Among their many findings, the researchers demonstrated that LP-184 has high nanomolar potency in 11 of the 19 NSCLC cell lines tested—indicating broad NSCLC anti-tumor activity. In vivo, LP-184 showed efficacy in terms of tumor regression in one of the two mouse models.

“We propose further evaluation of LP-184 in multiple PTGR1 high NSCLC settings that may not necessarily be mutually exclusive, including in highly prevalent KEAP1 and KRAS mutant tumors (Figure 6), and in patients with lack of actionable targets or resistance-related genes with no effective therapy options available.”

Click here to read the full research paper, published by Oncotarget.

YOU MAY ALSO LIKE: More Oncotarget Videos on LabTube

Oncotarget is a unique platform designed to house scientific studies in a journal format that is available for anyone to read—without a paywall making access more difficult. This means information that has the potential to benefit our societies from the inside out can be shared with friends, neighbors, colleagues, and other researchers, far and wide.

For media inquiries, please contact media@impactjournals.com.

Trending With Impact: Analysis of Breast Cancer in Nigerian Women

In this trending paper published by Oncotarget in 2021, a cohort of Nigerian women were assessed for a useful biomarker in aggressive molecular subtypes of breast cancer.

The Trending with Impact series highlights Oncotarget publications attracting higher visibility among readers around the world online, in the news, and on social media—beyond normal readership levels. Look for future science news about the latest trending publications here, and at Oncotarget.com.

Listen to an audio version of this article

Forms of cancer can vary in prevalence and aggression in different populations of people around the world. For instance, incidence rates of breast cancer (BC) have been rising in Africa over the past few decades. Research finds that Nigerian women have the highest age-standardized mortality rate of breast cancer on the African continent. This population in particular also faces disproportionately aggressive molecular subtypes of breast cancer.

“BC in Nigeria is characterized by disproportionately aggressive molecular subtypes, with exceptionally high rates of triple-negative (TN) BC [4], similar to BC in other countries in West Africa [5] and among African American women in the United States [6].”

In order to develop better treatment strategies, there is a distinct need to identify biomarkers that indicate, and even predict, these aggressive subtypes of breast cancer in Nigerian women. In 2021, a new study was conducted by researchers from Duke UniversityUniversity of LagosObafemi Awolowo University Teaching HospitalUniversity of IbadanFederal Medical Center AbeokutaUNC Gillings School of Global Public HealthOur Lady of Apostle Catholic Hospital in IbadanUniversity of Alabama at BirminghamUniversity of Kentucky, and University of Kansas Medical Center. Their trending research paper was published by Oncotarget and entitled, “Association of high-sensitivity C-reactive protein and odds of breast cancer by molecular subtype: analysis of the MEND study.”

C-Reactive Protein

“C-reactive protein (CRP) is associated with risk and aggressiveness for several types of cancer.”

When there is inflammation in the body, levels of the C-reactive protein (CRP) increase. This easily measurable protein can be a useful biomarker of systemic inflammation, infection, or tissue damage. Previous studies show that circulating CRP has been elevated in various types of cancers; it has also been associated with tumor prognosis. Past studies about CRP’s association in breast cancer subtypes have been notably few, and none have focused on isolating subpopulations in Africa.

“Additionally, it is worth noting that most of these past studies have been conducted in populations from the United States and Europe, among mostly White study populations, and to our knowledge, none have been conducted in populations from Africa.”

The Study

In this study, 555 Nigerian participants were assembled—of which 296 were confirmed breast cancer cases, and 259 were controls. The researchers collected clinical and reproductive characteristics of each participant, including the controls. In their first analysis, the researchers observed that newly diagnosed cases of Nigerian breast cancer were significantly more likely to have high levels of highly-sensitive CRP (hsCRP) compared to the controls. After adjusting for socio-demographic, clinical, and reproductive variables, the team still observed significant statistical significance for high levels of hsCRP associated with Nigerian BC. The findings from this cohort study also showed that high hsCRP was associated with a four-fold increased odds of BC.

“We also provide novel evidence of associations between hsCRP and BC molecular subtypes, with significant associations observed for luminal A, TN, and HER-enriched subtypes.”

Conclusion

“In conclusion, our analysis revealed a positive association between hsCRP and odds of BC, overall and for all molecular subtypes. Because CRP is an easily measured biomarker in the blood, it may represent a useful predictor of BC in the Nigerian context. We urge larger studies, preferably prospective cohort studies, among women of African descent to further characterize this association.”

Click here to read the full research paper, published by Oncotarget.

YOU MAY ALSO LIKE: More Oncotarget Videos on LabTube

Oncotarget is a unique platform designed to house scientific studies in a journal format that is available for anyone to read—without a paywall making access more difficult. This means information that has the potential to benefit our societies from the inside out can be shared with friends, neighbors, colleagues, and other researchers, far and wide.

For media inquiries, please contact media@impactjournals.com.

The Ride for Roswell: Rolling Around The Track August 7

Listen to an audio version of this article

The Ride for Roswell is one of the nation’s largest cycling events—hosted by Roswell Park Comprehensive Cancer Center—with ambitious goals to raise awareness and funds for cancer research and patient care. This charity bike ride, based out of Buffalo, New York, has brought people together for 25 years to celebrate cancer survivors, pay tribute to lives that have been lost, and to work together to support research and find a cure.

When it opened its doors in Buffalo in 1898, Roswell Park Comprehensive Cancer Center was the first cancer research-focused institution in the world. Today, this institution is one of only four National Cancer Institute-designated comprehensive cancer centers in the state of New York. Roswell Park Comprehensive Cancer Center is ranked by U.S. News & World Report as one of the best cancer hospitals in the United States.

The Origin of The Ride

The Ride for Roswell started in 1989, when Mitch Flynn, owner of the advertising agency Flynn & Friends, met Katherine Gioia. Katherine was a four-year-old patient battling a rare form of cancer. After Katherine’s death, less than a year after her diagnosis, Katherine’s mother, Anne Gioia, and aunt, Donna Gioia, founded the Roswell Park Alliance Foundation in her memory to raise money for cancer research and treatment. On June 29, 1996, Mitch and Alliance Foundation staff launched the first Ride for Roswell.

In the 25 years since then, thanks to many thousands of riders and generous donations, the Ride for Roswell has raised over $60 million to fund cancer research. The event has become one of the largest single-day charity rides in the United States. 

This Year

Traditionally (excluding last year’s COVID-19 inspired “Summer of The Ride”), teams of bicyclists register to ride in a one-day event and raise money to support their participation. This summer, there are two ways to ride. Riders can join in-person at various locations (socially distanced) throughout the Western New York area on Saturday, August 7, 2021. Participants can also ride on their own throughout the month of August.

Impact Journals has been sponsoring the Ride for Roswell since 2018. The Impact Journals peloton, Team Open Access (named after the open-source online medical journals OncotargetAgingGenes & Cancer, and Oncoscience), is captained by Sergei Kurenov. Sergei (who has been riding in the event since 2016) works at the Roswell Park Comprehensive Cancer Center to create, develop, and implement innovative diagnostic and surgical pre-planning software used in cancer treatment.

“Roswell Park Comprehensive Cancer Center is dedicated to providing a high level of care for cancer patients,” Sergei said. “By contributing to the Ride for Roswell, we are helping our patients to fight this most dangerous disease.”

Join Us!

There is still time to join Team Open Access and the Ride for Roswell this summer. You can also support the team by giving a donation of any size. Any avenue of support you may choose to donate to the Ride for Roswell will make a difference and change lives. 

“Finding a cure for cancer is something we are all incredibly passionate about, and we are so thankful and grateful for your support,” Sergei said. “Together, we can make a difference!”

Visit our team page to join or donate today.

Click here to learn more about the Ride for Roswell.

YOU MAY ALSO LIKE: More Oncotarget Videos on LabTube

For media inquiries, please contact media@impactjournals.com.

2021 Ride for Roswell
2021 Ride for Roswell

Oncotarget Uses TrendMD to Expand Research Impact

Oncotarget began using TrendMD—a platform that recommends relevant content to a large network of research readers.

Earth
Listen to an audio version of this article

Oncotarget has started a new venture to expand our reach and connect with other relevant platforms using TrendMD. The TrendMD widget has been applied at the bottom of all research papers on Oncotarget.com to serve recommended content to our readers, and readers on thousands of other high-traffic websites and scholarly platforms. Recommended content is based on the content currently being viewed, content that has been viewed in the past, and content other similar readers are viewing.

“[TrendMD’s] recommendation algorithms continuously optimize the placements of links to your content for the right audience while readers are actively looking for something interesting to discover.” —Source: TrendMD.com

This platform uses algorithms similar to those that Amazon uses to help bring fresh new relevant content to interested readers. The TrendMD widget recommends content both derived from Oncotarget.com and from other biomedical journals and articles publishing similar content. They also use collaborative filtering and track user behavior to learn how to suggest the right content for the right people.

Oncotarget uses TrendMD to help our authors better circulate their research to targeted audiences around the world, cross-promote papers in adjacent fields, and increase paper citations. In a research study by Scientometrics, TrendMD was shown to outperform PubMed related citations by 272%. By joining this platform, Oncotarget publications are now incorporated into the TrendMD network—with 100 million total monthly users. Papers published by Oncotarget will now be recommended on hundreds of other leading peer-reviewed journals and scholarly websites.

“TrendMD is the world’s leading discovery platform, delivering over 1 billion recommendations to over 100 million unique users each month on 4,500 websites from over 300 scholarly publishers.” —Source: TrendMD.com

Since papers are recommended based on algorithms aiming to share specific content with readers who are most likely to be interested in the content, readership and engagement on TrendMD is very high. TrendMD statistics show that readers have the lowest bounce rate and view more content on TrendMD compared to Google AdWords, Google Scholar, Twitter, and PubPeer. Oncotarget is proud to offer this service for our authors and the scientific research community.

Click here to learn more about TrendMD.

YOU MAY ALSO LIKE: More Oncotarget Videos on LabTube

Oncotarget is a unique platform designed to house scientific studies in a journal format that is available for anyone to read—without a paywall making access more difficult. This means information that has the potential to benefit our societies from the inside out can be shared with friends, neighbors, colleagues, and other researchers, far and wide.

For media inquiries, please contact media@impactjournals.com.

Trending With Impact: Targeted Treatment for Recurrent Ovarian Cancer

In this 2018 paper, researchers studied a new targeted strategy to treat ovarian cancer.

Anatomy and physiology of Ovary under the microscopic in laboratory.
Anatomy and physiology of Ovary under the microscopic in laboratory.

The Trending with Impact series highlights Oncotarget publications attracting higher visibility among readers around the world online, in the news, and on social media—beyond normal readership levels. Look for future science news about the latest trending publications here, and at Oncotarget.com.

Listen to an audio version of this article

Sialyl-Thomsen-nouveau (STn)—a tumor stem cell-associated carbohydrate antigen—is a moiety. “Moiety” is a term used to name molecular particles identified among multiple types of molecules. STns have been found on protein markers of cancer stem cells (CSCs) in pancreatic, colon, and gastric malignancies. Researchers hypothesize that CSCs can survive adjuvant chemotherapy and are responsible for tumor resurgence in many cancers, including recurrent ovarian cancer (OvCa). 

“Unfortunately, despite aggressive surgery and adjuvant chemotherapy, most women with OvCa develop recurrent disease that is ineffectively treated with current therapies. Novel treatment strategies are urgently needed to target chemoresistant disease.”

Researchers from Massachusetts General Hospital, Siamab Therapeutics, Inc., and Harvard Medical School conducted a novel research study in 2018 and authored a paper published by Oncotarget, entitled, “Treatment of ovarian cancer by targeting the tumor stem cell-associated carbohydrate antigen, Sialyl-Thomsen-nouveau.”

“Accumulating research has revealed not only the importance of CSCs in tumor initiation, metastasis, recurrence, and chemoresistance, but also the potential of CSC-directed therapies to impact patient survival.”

The Study

Researchers often use CD133 (a cell surface antigen) as a marker to detect and sequester CSCs in various solid tumors. In this study, the team analyzed the expression of STn and CD133 in ovarian cancer cell lines, their colony and sphere formation capacity, response to cytotoxic chemotherapy, and STn’s response to two targeted antibody drug conjugate (anti-STn-ADC) treatments in vivo and in vitro

“Analyses of colony and sphere forming capacity and of response to standard-of-care cytotoxic therapy suggest a subset of OvCa STn+ cells display some CSC features.”

In a subset of human OvCa cell lines, the researchers found that STn and CD133 were co-expressed. They also found that STn+ and CD133+ cells have increased colony formation capacity and elevated levels of STn increases sphere formation. Both of the anti-STn-ADC treatments had anti-cancer effects in the OvCa cell lines in vivo and in vitro. These findings show that STn demonstrates some stem-like properties and may be a viable therapeutic target in ovarian cancer.

“In summary, STn+ cells demonstrate some stem-like properties and specific therapeutic targeting of STn in ovarian tumors may be an effective clinical strategy to eliminate both STn+ CSC and STn+ non-CSC populations.”

Conclusion

“Our finding that targeting STn+ cells in vivo with a highly specific antibody conjugated to auristatin resulted in marked decreases in tumor burden without any obvious toxicity suggests that an anti-STn ADC approach may serve as a viable option in eliminating non-CSC as well as some CSC populations.”

Click here to read the full scientific study, published by Oncotarget.

YOU MAY ALSO LIKE: More Oncotarget Videos on LabTube



Oncotarget is a unique platform designed to house scientific studies in a journal format that is available for anyone to read—without a paywall making access more difficult. This means information that has the potential to benefit our societies from the inside out can be shared with friends, neighbors, colleagues, and other researchers, far and wide.

For media inquiries, please contact media@impactjournals.com.

Trending With Impact: ONC201 Induces Apoptosis in Breast Cancer

A novel therapeutic combination converts anti-proliferative effects in breast cancer cells to pro-apoptotic.

Trending With Impact: ONC201 Induces Apoptosis in Breast Cancer
3D illustration of the stages of cell apoptosis.

The Trending with Impact series highlights Oncotarget publications attracting higher visibility among readers around the world online, in the news, and on social media—beyond normal readership levels. Look for future science news about the latest trending publications here, and at Oncotarget.com.

In the 1990s, Dr. Wafik El-Deiry’s cancer research laboratory discovered a gene that encodes a protein, called death receptor 5, or TRAIL receptor 2. TRAIL is a protein that induces the process of cell death, or apoptosis. This pathway activates the body’s innate immune system and is capable of suppressing cancer cells by inducing apoptosis. 

After this discovery, researchers from the same lab considered the notion that increasing the production of TRAIL to enhance the body’s own immune response may have a safe therapeutic benefit in the treatment of cancer. The team searched for small molecules capable of upregulating the TRAIL gene and discovered the therapeutic compound TIC10, also known as ONC201. ONC201 is a well-tolerated drug currently being evaluated in advanced clinical trials for the treatment of various malignant solid tumors, including refractory metastatic breast cancer.

Researchers in Dr. El-Deiry’s laboratory have continued to investigate this drug in order to learn more about how it works, and what tactics or combinations may be used to produce better results for cancer patients. In a 2016 study, the researchers learned that ONC201 produces heterogeneous results in different tumor types.

“The question is, with this specific drug, what is the pattern of response, what determines that, and how can we get it to work a little bit better,” Dr. El-Deiry said in a recent Oncotarget interview.

Based out of Temple UniversityFox Chase Cancer CenterBrown University, and the El-Deiry Cancer Research Laboratory, researchers wrote a paper detailing their latest study on ONC201. The paper was published by Oncotarget in 2020 and entitled, “TRAIL receptor agonists convert the response of breast cancer cells to ONC201 from anti-proliferative to apoptotic.”

THE STUDY

Led by first-author Dr. Marie Ralff, the researchers in this study found that ONC201 induces differential responses across various breast cancer tumor subtypes. Few breast cancers are responsive to TRAIL, and one subtype that is responsive to TRAIL is triple-negative breast cancer.

“We saw that in some of these tumor types (the triple-negative breast cancer type in particular) the compound was having a pro-apoptotic effect, and in other [breast cancer] tumor types, it was having an anti-proliferative effect,” said Dr. Ralff.

When comparing in vivo and in vitro results of the drug, the team found that the pro-apoptotic effects translated to efficacy, while the anti-proliferative effects did not. The researchers then decided to investigate strategies to convert breast cancer cell response to ONC201 from anti-proliferative to apoptotic. ONC201 affects two known mechanisms of TRAIL resistance in breast cancer: death receptor 5 and anti-apoptotic proteins. This fact led the researchers to introduce a TRAIL receptor agonist antibody in combination with ONC201.

“If we pretreat TRAIL resistant breast cancer cells with ONC201, the level of surface death receptor 5 goes up and the intracellular levels of anti-apoptotic proteins go down, thereby priming the cells to undergo death through the TRAIL pathway. So, if we then add in a TRAIL receptor agonist, it induces apoptosis in a very potent way,” Dr. Ralff said.

CONCLUSION

“The concept is when cells are treated with the small molecule compound, not a whole lot happens. When cells are treated with TRAIL, not a whole lot happens. When you put them together, it’s like flipping a switch. The cells now undergo potent cell death,” Dr. El-Deiry said.

The potential efficacy of this therapeutic combination was strengthened by results in the study showing that ONC201 paired with the TRAIL receptor agonist antibodies is non-toxic to fibroblasts. The researchers also showed that the natural killer cells are only active against the breast cancer cells that have been exposed to ONC201. In vivo studies reaffirmed the safety of this combination in mouse models.

Click here to read the full research  study, published by Oncotarget.

Oncotarget is a unique platform designed to house scientific studies in a journal format that is available for anyone to read—without a paywall making access more difficult. This means information that has the potential to benefit our societies from the inside out can be shared with friends, neighbors, colleagues, and other researchers, far and wide.

For media inquiries, please contact media@impactjournals.com.