Tagged: Oncotarget

Trending With Impact: Analysis of Mutational Burden in NSCLC

Researchers conducted a multi-site cohort study of tumor mutational burden among hundreds of patients diagnosed with stage IV non-small cell lung cancer (NSCLC).

Lung cancer x-ray
Lung cancer x-ray

The Trending With Impact series highlights Oncotarget publications attracting higher visibility among readers around the world online, in the news, and on social media—beyond normal readership levels. Look for future science news about the latest trending publications here, and at Oncotarget.com.

Listen to an audio version of this article

While a high tumor mutational burden (TMB) may seem unfavorable in the midst of battling non-small cell lung cancer (NSCLC), a higher TMB has been associated with a higher number of neoantigens. The presence of more neoantigens can potentially elicit a stronger immune response. Therefore, TMB may be a viable biomarker of tumor response to immunotherapeutic agents. However, the definitions, parameters and units used to measure high- and low-TMB have been inconsistent over the years. Today, the consensus unit for reporting TMB has shifted to mutations per megabase (mut/Mb). The common cut-off for high- vs. low-TMB from tissue samples is >10 mut/Mb in NSCLC.

“Despite inconsistencies with TMB definition and reporting over time, high TMB has consistently been associated with improved clinical benefit among patients receiving immunotherapy for NSCLC [22].”

Researchers—from University of UtahUniversity of Minnesota DuluthHuntsman Cancer InstituteH. Lee Moffitt Cancer Center and Research InstituteBaptist Health Medical GroupMetroHealth Medical CenterRutgers Cancer Institute of New JerseyUniversity of Southern CaliforniaSaint Luke’s Cancer InstituteUniversity of Kentucky, and Bristol Myers Squibb—used the newest consensus unit and common cut-off parameters for TMB expression to measure TMB’s relationship to treatment response and survival outcomes among metastatic NSCLC patients. Their trending research paper was published in Oncotarget’s Volume 13 on January 31, 2022, and entitled, “Real-world survival analysis by tumor mutational burden in non-small cell lung cancer: a multisite U.S. study.”

“The purpose of this study is to evaluate clinical outcomes by TMB among NSCLC patients treated with immunotherapy containing regimens in the first-line setting.”

The Study

Participants in this large cohort study included 667 patients who had been diagnosed with stage IV NSCLC and treated with any NSCLC-related treatment. Patients were recruited from nine different academic and community cancer centers across the United States. The researchers intended to utilize this “real-world” dataset and hoped it would allow them to realistically assess the role of TMB as a potential biomarker of NSCLC response to treatment.

First, the team collected demographic and clinical characteristics and separated them into two groups: TMB greater or less than 10 mut/Mb. Characteristics included age, sex, race, body mass index, smoking history, PD-L1 expression, comorbidities, Eastern Cooperative Oncology Group performance status (ECOG PS) at diagnosis, histology subtype, Stage at metastatic diagnosis, and site of metasteses. Interestingly, a history of smoking was significantly associated with a TMB greater than 10 mut/Mb.

“Smoking status was significantly associated with TMB >10 with 91% of patients reported as current or former smokers compared to 61% in the TMB <10 cohort (p < 0.01, Table 1).”

The Results

The researchers found no association between TMB and age, PD-L1 expression, tumor histology, or cancer stage at diagnosis. Next, the team assessed for significant associations between TMB and 17 genomic alterations. They found that lower TMB was associated with ALK and EGFR alterations. Higher TMB was associated with TP53 alterations. The researchers investigated the association between TMB and treatment patterns and responses. The overall response rate was very similar in both groups. 

A multivariable model was used to analyze overall patient survival and progression-free survival (PFS) for first-line immunotherapy containing regimens based on TMB. The model controlled for the initial patient characteristics and did not demonstrate significantly different results for overall survival in the two groups. However, the researchers found in a subgroup analysis that, of the patients who received TMB testing within 60 days of receiving immunotherapy treatment, those with TMB >10 demonstrated significantly longer overall survival compared to their TMB <10 counterparts. In terms of PFS, they found that PFS was longer among patients with TMB >10 in the cohort and subgroup analyses. PFS was significantly longer when treated with an immunotherapy-containing regimen first-line compared to a first-line treatment of chemotherapy. An association between TMB and PD-L1 expression was not found in this study.

Conclusion

“This study evaluated two broad questions: (1) The distribution of TMB in the real world and its association with baseline clinical and demographic features (n = 677) and (2) the association between TMB and clinical outcomes among NSCLC patients who received first-line immunotherapy (n = 224).”

Results of the study confirmed the association between a higher TMB and smoking history, as well as the benefits of first-line immunotherapy within two months of TMB testing. While the researchers were forthcoming about limitations in their study, metastatic NSCLC patients with TMB>10 who were treated with first-line immunotherapy had improved overall survival and progression-free survival.

“Based on the results in this study and prior research, TMB along with other biomarkers, such as PD-L1, may help identify patients more likely to benefit from first-line immunotherapy.”

Click here to read the full research paper published by Oncotarget.

ONCOTARGET VIDEOS: YouTube | LabTube | Oncotarget.com

Oncotarget is an open-access journal that publishes primarily oncology-focused research papers in a continuous publishing format. These papers are available at no cost to readers on Oncotarget.com. Open-access journals have the power to benefit humanity from the inside out by rapidly disseminating information that may be freely shared with researchers, colleagues, family, and friends around the world.

For media inquiries, please contact media@impactjournals.com.

Trending With Impact: Genes Identified in Endocrine Therapy Resistance

Researchers studied the dynamic behavior of gene expression during the development of endocrine therapy resistance in breast cancer.

Figure 4: Tissue-specific protein-protein interaction network for modules 1 and 2 candidate genes.
Figure 4: Tissue-specific protein-protein interaction network for modules 1 and 2 candidate genes.

The Trending With Impact series highlights Oncotarget publications attracting higher visibility among readers around the world online, in the news, and on social media—beyond normal readership levels. Look for future science news about the latest trending publications here, and at Oncotarget.com.

Listen to an audio version of this article

Hormones can cause tumor growth in some subtypes of breast cancer. Endocrine therapy, also known as hormone therapy, is a type of cancer treatment that removes or blocks the hormones which fuel breast cancer growth. This treatment is often given as adjuvant therapy after breast cancer surgery to lower the risk of cancer reoccurrence. In some cases, endocrine therapy may be used as a first-line treatment for hormone receptor-positive breast cancers, such as estrogen receptor-positive (ER-positive) breast cancer. However, ER-positive tumors frequently become unresponsive to endocrine therapy, and tumor regrowth can occur after treatment. The underlying causes of endocrine resistance are mostly undetermined.

“Endocrine therapies have been successful at improving cancer outcomes; however, the development of endocrine resistance, or resistance to inhibition of ER actions, remains a roadblock in breast cancer treatment.”

Recently, researchers—from UTHealth HoustonUniversity of ChicagoUniversity of Texas MD Anderson Cancer Center, and the University of Houston—used a new statistical and computational pipeline method of analysis to study the dynamic behavior of gene expression during the development of endocrine resistance in breast cancer. Their trending research paper published in Oncotarget on April 06, 2022, is entitled, “A novel group of genes that cause endocrine resistance in breast cancer identified by dynamic gene expression analysis.”

The Pipeline

“In this study, we explored the dynamic behavior of the entire gene population to identify novel genes that play fundamental roles in the development and progression of endocrine-resistant breast cancer.” 

Pipeline analysis in biology is a method of studying and analyzing a group of genes or proteins in order to understand their structure and function. The pipeline can be used to determine gene dynamics, clusters, similarities, and networks. In this case, the researchers used it to understand how endocrine resistance develops over time.

“The pipeline provides three main functions. First, statistical hypothesis testing determines a set of dynamic response genes (DRGs) that exhibit significant changes over time. Next, these DRGs are clustered into gene response modules (GRMs), sets of DRGs with similar time course expression patterns. Finally, the GRMs associations and regulatory effect are analyzed as a gene regulatory network using ordinary differential equations.”

The Study

To begin this study, the researchers first aimed to select a cell-based model that represents endocrine resistance in patients as closely as possible. They gathered data from breast cancer patients who were either resistant or sensitive to endocrine therapies and compared them with publicly available gene expression data. Results showed that the LTED MCF7 cell model displayed similar endocrine resistance to patient tumor data.

Next, the researchers observed the development of endocrine therapy resistance in the LTED MCF7 cell model, as well as the changes in gene expression over time. This data was collected and used to develop a mathematical model of gene expression dynamics during endocrine therapy resistance development. After statistical and computational pipeline analysis, the team identified a group of 254 genes whose time course expression significantly changed during the development of endocrine therapy resistance. They then aimed to validate their findings and used multiple bioinformatics approaches to narrow down this group of candidate genes.

“To further refine the genes common to endocrine resistance development and progression, we utilized several bioinformatic approaches designated to rank and prioritize the 254 common genes.”

The Results

Candidate genes were narrowed down to a novel group of 34 genes whose time course expression most significantly changed during LTED MCF7 cell modeling of endocrine-resistant breast cancer development. In addition, microarray analysis also showed that a subset of these genes was differentially expressed in triple-negative breast cancer (TNBC). This suggests that there may be shared genetic mechanisms between endocrine-resistant breast cancer and TNBC.

“As these two subtypes of breast cancer are the most fatal breast cancers with no known effective therapeutic approaches available to date, research on underlying genetic factors is of great importance.”

Conclusion

Their analysis led to the identification of a novel group of 34 genes that may play a role in endocrine resistance. Interestingly, some of these genes were also differentially expressed in TNBC. These findings could potentially lead to the development of new therapeutic strategies to overcome endocrine therapy resistance in some of the most difficult to treat and fatal breast cancers.

“Our analysis identified novel candidate genes with potential significance in endocrine-resistant breast cancer as well as TNBC, which opens new doors for designing novel therapeutic approaches for endocrine-resistant breast cancer and TNBC.”

Click here to read the full research paper published by Oncotarget.

ONCOTARGET VIDEOS: YouTube | LabTube | Oncotarget.com

Oncotarget is an open-access journal that publishes primarily oncology-focused research papers in a continuous publishing format. These papers are available at no cost to readers on Oncotarget.com. Open-access journals have the power to benefit humanity from the inside out by rapidly disseminating information that may be freely shared with researchers, colleagues, family, and friends around the world.

For media inquiries, please contact media@impactjournals.com.

Trending With Impact: Interrelated Oncogenic Pathways in Osteosarcoma

Researchers evaluated the roles and relationship between two cancer-related signaling pathways in osteosarcoma.

A child x-ray elbow ​Lateral, AP view of the forearm caused by bone cancer(osteosarcoma) of the ulna.
A child x-ray elbow ​Lateral, AP view of the forearm caused by bone cancer(osteosarcoma) of the ulna.

The Trending With Impact series highlights Oncotarget publications attracting higher visibility among readers around the world online, in the news, and on social media—beyond normal readership levels. Look for future science news about the latest trending publications here, and at Oncotarget.com.

Listen to an audio version of this article

Osteosarcoma (OS) is a fairly uncommon type of bone cancer that primarily develops in the long bones found in the arms and legs. While most osteosarcomas occur in patients between the ages of 10 and 30 years old, half of all osteosarcomas develop in children. Osteosarcoma is a genetically diverse cancer that lacks a consistent targetable mutation—saddling patients and researchers with major challenges when it comes to treatment options.

“Despite their high mutation burden, OS has proven surprisingly recalcitrant to the numerous immunotherapies that have revolutionized the treatment of other mutation-high cancers.”

The lack of consistent therapeutic targets in osteosarcoma has driven researchers to investigate the role of oncogenic signaling pathways in this disease. In a trending research paper published in Oncotarget on March 9, 2022, researchers from The University of Texas’ MD Anderson Cancer Center and Rice University evaluated osteosarcoma and two cancer-related signaling pathways: IGF-1/mTOR and YAP/TAZ (the Hippo Pathway). Their paper was entitled, “Correlation of nuclear pIGF-1R/IGF-1R and YAP/TAZ in a tissue microarray with outcomes in osteosarcoma patients.”

The Study

Oncogenic signaling pathways are often deregulated in cancer, which means that these pathways can potentially be targeted and exploited for therapeutic purposes. The insulin/insulin-like growth factor (IGF) signaling pathway to mTOR (IGF-I/mTOR) is a well-known oncogenic pathway that is often deregulated in solid tumors. The YAP/TAZ (Hippo pathway) plays an important role in organ size control and tissue regeneration.

In this study, the researchers retrospectively evaluated the correlation between nuclear pIGF-IR/IGF-IR, YAP/TAZ expression and outcomes in patients with osteosarcoma. Effectors and pathways were investigated among 37 post-treatment human osteosarcoma tumor specimens. The specimens were analyzed using tissue microarray (TMA), confocal imaging, quantitative image analysis, nuclear staining, the Cox proportional hazards model, and Kaplan–Meier analysis. Researchers who evaluated images of de-identified patient samples were blind to patient demographics and outcomes until after analysis was complete.

The Results

Their results demonstrated that nuclear IGF-1R and YAP/TAZ are interrelated in human osteosarcoma. Their findings also showed that high nuclear-phosphorylated IGF-1R and low YAP nuclear-to-cytoplasmic (N:C) ratio are potentially negative prognostic indicators of overall survival in osteosarcoma patients.

“While sole targeting of the IGF/PI3K/mTOR cascade has had limited success in early phase osteosarcoma trials, our study suggests that nuclear pIGF-1R might serve as a prognostic biomarker to identify osteosarcoma patients that have an especially poor prognosis.”

Findings from this study may have revealed a clinically important relationship between these pathways in osteosarcoma. Osteosarcoma is currently treated with a combination of surgery, chemotherapy and radiation therapy. However, this study suggests that therapies targeting the IGF-I/mTOR and/or YAP/TAZ pathways may improve the diagnosis and treatment of patients with osteosarcoma.

Conclusion

The researchers were forthcoming about limitations in their study. They recognized that the sample size was relatively small and the study design only involved post-treatment specimens and retrospective analysis. However, the authors note that the likely crosstalk observed between the YAP/TAZ and IGF/PI3K/mTOR pathways is an important finding. They hypothesize that a dual-targeted pathway approach may have synergistic antineoplastic activity.

“Given the rarity of osteosarcoma, clinical validation of our results will almost certainly require the active participation of national and international high-volume cancer centers.”

Click here to read the full research paper published by Oncotarget.

ONCOTARGET VIDEOS: YouTube | LabTube | Oncotarget.com

Oncotarget is an open-access journal that publishes primarily oncology-focused research papers in a continuous publishing format. These papers are available at no cost to readers on Oncotarget.com. Open-access journals have the power to benefit humanity from the inside out by rapidly disseminating information that may be freely shared with researchers, colleagues, family, and friends around the world.

For media inquiries, please contact media@impactjournals.com.

Scientific Integrity

Trending With Impact: Adjunct Virotherapy Fights Multiple Myeloma

Researchers investigated using oncolytic viruses to treat multiple myeloma—alone and in a combination approach.

3D red blood cells in vein
3D red blood cells

The Trending With Impact series highlights Oncotarget publications attracting higher visibility among readers around the world online, in the news, and on social media—beyond normal readership levels. Look for future science news about the latest trending publications here, and at Oncotarget.com.

Listen to an audio version of this article

Multiple myeloma (MM) is a currently incurable cancer of blood plasma cells. Autologous stem cell transplantation (ASCT) has had efficacious results among eligible patients. However, even after ASCT, a significant number of patients continue to relapse and become resistant to current standard therapies.

A promising new method to treat blood cancers is a form of immunotherapy called virotherapyOncolytic viruses are uniquely capable of being reprogrammed to selectively infect and kill various cancer cells without infecting or damaging normal cells in host organisms, including mice and humans. Researchers from Arizona State UniversityEmory University and the Mayo Clinic (in Scottsdale, Arizona) had previously experimented with using the oncolytic myxoma virus (MYXV) to treat MM. In nature, MYXV only affects rabbits and is innocuous in mice and humans. They found that MYXVs delivered through stem cell transplantation can eliminate some residual MM cells in the Balb/c mouse model.

“Recently, we reported that ex vivo virotherapy with oncolytic myxoma virus (MYXV) improved MM-free survival in an autologous-transplant Balb/c mouse model.”

However, the researchers found that Balb/c mice may not be ideal models for MM. They observed that the behavior of MM in Balb/c mice did not quite reflect the development, clinical manifestation and localization of MM observed in human patients. Therefore, the team conducted a new study of MYXVs in the Vk*MYC transplantable C57BL/6 mouse MM model. Their trending research paper was published in Oncotarget on March 3, 2022, and entitled, “Transplantation of autologous bone marrow pre-loaded ex vivo with oncolytic myxoma virus is efficacious against drug-resistant Vk*MYC mouse myeloma.

The Study

“In this study, we used the Vk*MYC MM model because it faithfully recapitulates the localization of the myeloma disease within the bone marrow as well as the clinical manifestation of the disease including bone damage (paralysis), renal failure [912].”

A bortezomib-resistant multiple myeloma murine cell line was examined in this study, named Vk12598. Three different strains of MYXV were tested here: vMyx-M093L-Venus, vMyx-M135KO and vMyx-hTNF. The vMyx-M093L-Venus is a wild-type MYXV that expresses Venus-tagged M093 protein as a virion component. The vMyx-M135KO virus is an unarmed and attenuated recombinant MYXV, in which the M135 gene has been deleted and the green fluorescent protein (GFP) has been inserted. The vMyx-hTNF strain is genetically modified, or “armed”, to express human tumor necrosis factor (TNF). TNF is a cytokine that induces apoptosis in various cancer cells.

First, the researchers examined the in vitro ability of these three MYXVs to bind to the Vk12598 cells in culture media. These results were then tested in vivo by first injecting the C57BL/6 mice with Vk12598 cells. Vk12598 cells were seeded for three weeks to allow the MM to progress in the mice. Then, some mice were treated with either cyclophosphamide (a common chemotherapeutic drug used to treat MM) or the compounds LCL161 and α-PD-1. Next, bone marrow cells were loaded with either vMyx-M135KO or vMyx-hTNF and transplanted into the mice.

The Results

In vitro, the researchers found that all three MYXVs did indeed bind to, infect and compromise the viability of the BOR-resistant MM cells in a relatively short period of time. In vivo, the results demonstrated that, alone, autologous bone marrow leukocytes armed ex vivo with the MYXVs (BM/MYXV) exhibited moderate therapeutic effects against the MM cells. This indicated that BM/MYXV has potential as an adjunct therapy against the MM. While little synergy was observed between Cyclophosphamide (Cy) and BM/MYXV, Cy in combination with BM/vMyx-M135KO delayed the onset of myeloma in the mice more than Cy combined with BM/vMyx-hTNF. The researchers note that these results indicate the TNF transgene may have actually interfered with efficacy.

The authors also observed a better synergistic ability between BM/vMyx-M135KO and LCL161 with α-PD-1 to control the progression of MM. This combination resulted in a significant improvement in survival rates and decreased tumor burden. When surviving mice were re-introduced to Vk12598 cells, the researchers found that they had developed acquired anti-MM immunity.

Conclusion

“Together, we show promising results in terms of therapeutic benefits of delivering oncolytic MYXV via carrier cells from autologous BM transplants, both alone or in combination with LCL161 and α-PD-1 against drug-resistant MM cells in vivo. To our knowledge, these are the first results showing therapeutic benefits of oncolytic MYXV to control and even eradicate established drug-resistant MM cells in a preclinical murine model that has previously shown excellent concordance with predicting clinical efficacy in human MM patients.”

Click here to read the full research paper published by Oncotarget.

ONCOTARGET VIDEOS: YouTube | LabTube | Oncotarget.com

Oncotarget is a unique platform designed to house scientific studies in a journal format that is available for anyone to read without a paywall making access more difficult. This means information that has the potential to benefit our societies from the inside out can be shared with friends, neighbors, colleagues, and other researchers, far and wide.

For media inquiries, please contact media@impactjournals.com.

Scientific Integrity

A Remote Weight Loss Strategy for Breast Cancer Survivors

Researchers Jennifer Y. Sheng and Vered Stearns discussed the results of a study that compared weight loss interventions among overweight or obese survivors of breast cancer.

Weight loss for survivors of breast cancer
Listen to an audio version of this article

After being diagnosed with breast cancer, up to 96% of women have reported gaining weight. Medications, inactivity, food choice, and food quantity can all lead to weight gain. Studies have shown that weight gain can increase the risk of breast cancer recurrence by 40–50% and breast cancer-related mortality by 53–60%. Thus, for women with breast cancer and those who have survived breast cancer, weight management is a potentially life-saving intervention.

In an editorial paper published by Oncotarget in 2021, researchers Jennifer Y. Sheng and Vered Stearns from Johns Hopkins School of Medicine and the Johns Hopkins Sidney Kimmel Comprehensive Cancer Center discussed the results of the 2020 POWER-Remote Trial—a study among breast cancer survivors on the results of a remote-based weight loss program compared with a self-directed approach. Their editorial paper is entitled, “Innovating and expanding weight loss strategies for breast cancer survivors.”

The POWER Intervention

The Practice-based Opportunities for Weight Reduction (POWER) intervention is a 12-week behavioral weight loss program designed for overweight and obese participants. The POWER program strategy focuses on physical activity and behavioral changes, nutrition education and setting individual goals. Researchers developed the POWER-remote intervention to enable participants to engage in this weight loss program remotely through weekly video conferences and phone calls. In the current editorial paper, the researchers discussed the results from a study that adapted the POWER-remote intervention for breast cancer survivors: the POWER-Remote Trial.

“The original Practice-based Opportunities for Weight Reduction (POWER) study in obese individuals with a risk for cardiovascular disease demonstrated equivalent weight loss outcomes between in-person coaching and a remote intervention [24].”

The POWER-Remote Trial

The POWER-Remote Trial was a randomized, controlled comparative effectiveness trial that evaluated the POWER-remote intervention compared to a self-directed weight loss approach among overweight or obese breast cancer survivors. Between 2013 and 2015, 87 overweight or obese women with stage 0-III breast cancer (who completed local therapy and chemotherapy) were evaluable for analysis in this study. Forty-five women were enrolled in the POWER-remote arm of the study and 42 women were enrolled in the self-directed arm.

“Our group compared the remote-based POWER intervention (telephone calls by a coach, access to online learning materials, online self-directed dietary/activity monitoring) to self-directed weight loss in overweight or obese survivors of early-stage breast cancer [25].”

Over the course of the study, the researchers found high adherence in the POWER-remote arm, with only one participant lost in follow-up. At the 12-month mark, 51% of the POWER-remote participants lost greater than or equal to 5% of their baseline body weight. Among the self-directed participants, 17% lost 5% or more of their baseline body weight. The results of this study suggest that the POWER-remote intervention is an effective weight loss strategy. It is a cost-effective, scalable and conscientious solution to assist with weight loss among many breast cancer survivors.

Conclusion

Despite the significant improvements in weight, body composition, fitness, and quality of life seen by over half of the participants in the POWER-remote arm, the researchers also pointed out a problem. The POWER-remote intervention still did not yield significant results in almost half of the other participants. Trouble sleeping was shown as a potential culprit that hindered weight loss, while many other factors inhibiting weight loss in this population are not yet fully understood.

The authors wrote that it may be necessary to further individualize or enhance the POWER intervention to achieve greater success in breast cancer survivors. They also suggested that, in some people, the POWER program may need to be augmented with pharmacological agents to aid in weight loss. In addition, the authors believe that the payer system should be reevaluated to expand coverage for obesity treatments.

“At present, I’m conducting a phase two study to determine whether an adaptor approach with pharmacotherapy can augment obesity treatment in breast cancer survivors. This study is called the A-NEW study, which stands for an Adaptive Nutrition and Exercise Weight Loss Study,” Dr. Jennifer Sheng said in a recent Behind the Study interview with Oncotarget. “We’re also looking forward to analyzing results from the COOIN study, the Cancer, Obesity, Overweight, and Insomnia study, which was led by Dr. Janelle Coughlin.”

Click here to read the full editorial paper published by Oncotarget.

ONCOTARGET VIDEOS: YouTube | LabTube | Oncotarget.com

Oncotarget is a unique platform designed to house scientific studies in a journal format that is available for anyone to read without a paywall making access more difficult. This means information that has the potential to benefit our societies from the inside out can be shared with friends, neighbors, colleagues, and other researchers, far and wide.

For media inquiries, please contact media@impactjournals.com.

Scientific Integrity

Trending With Impact: Are NOTCH1 Variants Prognostic in Breast Cancer?

Researchers determined the prognostic ability of three NOTCH1 gene variants by incorporating them into two non-tumorigenic breast cell lines.

Breast cancer illustration
Breast cancer illustration

The Trending With Impact series highlights Oncotarget publications attracting higher visibility among readers around the world online, in the news, and on social media—beyond normal readership levels. Look for future science news about the latest trending publications here, and at Oncotarget.com.

Listen to an audio version of this article

The genetic changes that occur within the protein-coding gene NOTCH1 have not yet been fully studied or classified. Despite a lack in research, previous studies have suggested that NOTCH1 may be a potential target for novel cancer therapies, particularly against triple-negative breast cancer (TNBC). NOTCH1 variants in TNBC tend to cluster in the PEST region and have previously been linked to gamma secretase inhibitor (GSI) sensitivity and chemotherapy resistance.

“Furthermore, TNBC patients with increased Notch1 expression have demonstrated increased aggressive phenotypes and lower median overall survival [25].”

Since TNBC is well-known for a lack of actionable therapeutic targets, aggressive phenotypes and poor prognoses, there is an important need to develop new targeted therapies—as well as predictive markers for those therapies. Researchers from The Johns Hopkins University School of MedicineVanderbilt University Medical Center and The Vanderbilt-Ingram Cancer Center experimented in vitro with NOTCH1 variants and their ability to predict TNBC responsiveness to GSIs and standard of care chemotherapies. Their trending research paper was published by Oncotarget on February 16, 2022, and entitled, “NOTCH1 PEST domain variants are responsive to standard of care treatments despite distinct transformative properties in a breast cancer model.”

The Study

The researchers used three publicly available tumor-associated variant databases to identify three NOTCH1 variants that are commonly mutated in breast cancers; two variants were located in the A2441 site on NOTCH1 and the third variant was located in the PEST region of NOTCH1. To investigate the role of these NOTCH1 variants in TNBC in vitro, the team cultured two non-tumorigenic breast epithelial cell lines. Uniquely, they used an adeno-associated virus (AAV) vector to isogenically incorporate the NOTCH1 variants into the two cell lines. The researchers also developed a wildtype vector for the control arm of the study.

“In addition to the NOTCH1 variants, a targeted wildtype (TWT), which underwent the same gene targeting mechanism with a wildtype vector, was generated for both parental cell lines to act as a control.”

A standard growth factor supplemented media was used to determine if the NOTCH1 variants caused increased proliferation in the non-tumorigenic cell lines. Compared to the controls, no significant change in proliferation was observed. They also removed the epidermal growth factor (EGF) from the cells to determine if these NOTCH1 variants impart a ligand-independent proliferative advantage. In both cell lines, their results demonstrated that the A2441 variants exhibited EGF-independent growth, while the PEST NOTCH1 variant did not. Immunoblot analyses suggested that, in the absence of EGF, the A2441 NOTCH1 variants activated the MAPK pathway. These EGF-independent NOTCH1 variants (not the PEST NOTCH1 variant) conferred an invasive growth phenotype, increased migratory potential, had dysregulated 3D morphology, and significantly altered gene expression in cancer pathway genes.

Next, to measure the responsiveness and susceptibility of these variants to therapeutic agents, the cells were treated with six chemotherapeutic agents and nirogacestat—a GSI drug. Interestingly, none of the three variants demonstrated significantly different responses to the treatments when compared to one another. Furthermore, all of the variants showed sensitivity to these standard therapies used against TNBC. This suggests that these specific genetic changes within NOTCH do not have a large impact on tumor behavior and may not be useful as predictive markers for therapy response.

Conclusion

“Taken together, these data suggest that the oncogenic potential of NOTCH1 PEST domain variants depends on both variant type and amino acid location.”

Contrary to previous studies, the researchers found that the three NOTCH variants did not demonstrate significantly different responses to the GSI or the chemotherapies despite demonstrating distinct phenotypes. The lack of differential responses demonstrated by the variants in this study suggests that there is high variability among NOTCH1 variants. The prognostic potential of NOTCH1 may be dependent on the type of variant and its location, but more expansive research is necessary.

“Future studies involving meticulous characterization of an expansive panel of NOTCH1 variants in a similar model may provide mechanistic insight and predictive and/or prognostic value that is both variant type and site dependent.”

Click here to read the full research paper published by Oncotarget.

ONCOTARGET VIDEOS: YouTube | LabTube | Oncotarget.com

Oncotarget is a unique platform designed to house scientific studies in a journal format that is available for anyone to read without a paywall making access more difficult. This means information that has the potential to benefit our societies from the inside out can be shared with friends, neighbors, colleagues, and other researchers, far and wide.

For media inquiries, please contact media@impactjournals.com.

Scientific Integrity

Prognostic Markers Identified in Ultra-Rare Adrenal Cancer

Researchers demonstrated the overexpression of the protein APOBEC3B in adrenocortical carcinoma. They also identified the transcription factor, known as GATA3, that directly regulates APOBEC3B.

Illustration of kidneys and adrenal glands

Listen to an audio version of this article

Adrenocortical carcinoma (ACC) is a rare and aggressive cancer that forms in the outer layer of the adrenal gland tissue above the kidneys. According to the National Institutes of Health, the occurrence of ACC in the United States is believed to only affect one to two people per million, per year. This highly-rare disease also challenges patients and researchers due to its post-diagnosis five-year survival rate of a mere 51%.

At this time, there are no known external factors that cause this disease. Most adrenocortical tumors that have been found produce symptoms including abdominal pain and higher levels of certain hormones, inclusive of cortisol, aldosterone, testosterone, and estrogen. Any of these hormones produced in excess can have numerous troubling effects on the body and, most alarmingly, the cancer cells in the adrenal glands have the potential to travel to other organs.

Researchers—from the National Cancer InstituteStanford UniversityMedical College of WisconsinFrederick National Laboratory for Cancer Research, and Salubris Biotherapeutics—conducted a study to learn more about ACC and the mechanisms that lead to the biological materialization of this ultra-rare disease. In 2020, their research paper was published by Oncotarget and entitled, “GATA3 and APOBEC3B are prognostic markers in adrenocortical carcinoma and APOBEC3B is directly transcriptionally regulated by GATA3.”

APOBEC3B In ACC

Previously, recent evidence confirmed the overexpression of a protein that is rightfully abbreviated as APOBEC3B (fully known as Apolipoprotein B mRNA editing enzyme catalytic subunit 3B) as a source of mutations occurring in breast, bladder, cervical, lung, head, and neck cancers. In this study the researchers used two publicly available datasets to analyze APOBEC3B gene expression in 21 normal adrenal cortices, 69 benign adrenocortical tumors and 38 ACC samples. They found that APOBEC3B is significantly overexpressed in ACC. The effects of this overexpression, in addition to a tumor mass, were consequently associated with DNA damage, reduced number of cells in S-phase arrest and increased alterations and gene mutations (particularly in the TP53 gene).

To assess the association between APOBEC3B and adrenocortical tumor growth, the team used mouse models to perform a “knockdown” or reduction, in APOBEC3B and measured the effects this had on the tumor tissue. The mice were divided into three groups of eight, and at weeks six and eight of the APOBEC3B knockdown, the researchers found significantly reduced cell proliferation and more cells in S-phase arrest.

GATA3 and APOBEC3B In ACC

The team was able to successfully knockdown APOBEC3B in mice and demonstrated that this caused a significant reduction in tumor volume. They also found in their analysis that tumors with higher expressions of APOBEC3B presented with a higher number of TP53 gene mutations. Given that the researchers were now confident that APOBEC3B is the protein that coincides with the growth of tumors in ACC, they sought to identify the mechanism responsible for regulating this protein.

After a thorough process of tests distinguishing between 90 different cancer-associated transcription factors, the team observed that the transcription factor GATA3 directly binds to the promoter region of APOBEC3B and transcriptionally regulates its gene expression in ACC.

Conclusion

In this study, the team successfully demonstrates that the protein APOBEC3B is overexpressed in ACC and causes DNA damage, alterations and mutations, and also, for the first time, that GATA3 directly regulates the expression of APOBEC3B. This confirms that the higher expression levels of both APOBEC3B and GATA3 are prognostic markers for patients with ACC.

This new information may be used in further research to develop treatments and interventions to improve the prognosis for those affected by adrenocortical carcinoma and other related disorders.

Click here to read the full research paper published by Oncotarget.

Go Behind the Study with co-author, Dr. Monica Varun Tyagi.

Testimonial: Dr. Tyagi describes her experience publishing with Oncotarget.

ONCOTARGET VIDEOS: YouTube | LabTube | Oncotarget.com

Oncotarget is a unique platform designed to house scientific studies in a journal format that is available for anyone to read without a paywall making access more difficult. This means information that has the potential to benefit our societies from the inside out can be shared with friends, neighbors, colleagues, and other researchers, far and wide.

For media inquiries, please contact media@impactjournals.com.

Scientific Integrity

Oncotarget’s Top 10 Most-Viewed Papers in 2021

Read the 10 most-viewed oncology-focussed papers on Oncotarget.com in 2021.

Oncotarget's top 10 papers of 2021

Listen to an audio version of this post

#10: Metformin and berberine, two versatile drugs in treatment of common metabolic diseases

Authors: Haoran Wang, Chen Zhu, Ying Ying, Lingyu Luo, Deqiang Huang, and Zhijun Luo

Institutions: The First Hospital of Nanchang University, Nanchang University and Boston University School of Medicine

Quote: “Metformin has been used as a glucose lowering drug for several centuries and is now a first-line drug for type 2 diabetes mellitus (T2DM). Since the discovery that it activates AMP-activated protein kinase (AMPK) and reduces risk of cancer, metformin has drawn great attentions. Another drug, berberine, extracted from berberis vulgaris L. (root), was an ancient herbal medicine in treating diarrhea.”


#9: Cell fusion as a link between the SARS-CoV-2 spike protein, COVID-19 complications, and vaccine side effects

Author: Yuri Lazebnik

Institution: Lerna Consulting

Quote: “A distinctive feature of the SARS-CoV-2 spike protein is its ability to efficiently fuse cells, thus producing syncytia found in COVID-19 patients. This commentary proposes how this ability enables spike to cause COVID-19 complications as well as side effects of COVID-19 vaccines, and suggests how these effects can be prevented.”


#8: Physical activity and telomere length: Impact of aging and potential mechanisms of action

Authors: Nicole C. Arsenis, Tongjian You, Elisa F. Ogawa, Grant M. Tinsley, and Li Zuo

Institutions: University of Massachusetts Boston, Texas Tech University and The Ohio State University College of Medicine

Quote: “Based on the significance of telomere length in aging and the need to understand the potential association with physical activity, the purpose of this systematic review is to investigate whether physical activity and exercise influence telomere length and to discuss possible mechanisms of action.”


#7: Hedgehog signaling induces PD-L1 expression and tumor cell proliferation in gastric cancer

Authors: Jayati Chakrabarti, Loryn Holokai, LiJyun Syu, Nina G. Steele, Julie Chang, Jiang Wang, Syed Ahmed, Andrzej Dlugosz, and Yana Zavros

Institutions: University of Cincinnati, University of Cincinnati College of Medicine, University of Cincinnati Cancer Institute, University of Michigan

Quote: “Tumor cells expressing programmed cell death ligand 1 (PD-L1) interact with PD-1 on CD8+ cytotoxic T lymphocytes (CTLs) to inhibit CTL effector function. In gastric cancer, the mechanism regulating PD-L1 is unclear. The Hedgehog (Hh) signaling pathway is reactivated in various cancers including gastric. Here we tested the hypothesis that Hh-induced PD-L1 inactivates effector T cell function and allows gastric cancer cell proliferation.”


#6: cGAS-STING pathway in oncogenesis and cancer therapeutics

Authors: Brandon Yi Da Hoong, Yunn Hwen Gan, Haiyan Liu, and Ee Sin Chen

Institutions: National University of Singapore and National University Health System (NUHS) Singapore

Quote: “The host innate immunity offers the first line of defense against infection. However, recent evidence shows that the host innate immunity is also critical in sensing the presence of cytoplasmic DNA derived from genomic instability events, such as DNA damage and defective cell cycle progression. This is achieved through the cyclic GMP-AMP synthase (cGAS)/Stimulator of interferon (IFN) genes (STING) pathway. Here we discuss recent insights into the regulation of this pathway in cancer immunosurveillance, and the downstream signaling cascades that coordinate immune cell recruitment to the tumor microenvironment to destroy transformed cells through cellular senescence or cell death programs.”


#5: Anti-aging: senolytics or gerostatics (unconventional view)

Author: Mikhail V. Blagosklonny

Institution: Roswell Park Cancer Institute

Quote: “Based on lessons of cancer therapy, here I suggest how to exploit oncogene-addiction and to combine drugs to achieve selectivity. However, even if selective senolytic combinations will be developed, there is little evidence that a few senescent cells are responsible for organismal aging. I also discuss gerostatics, such as rapamycin and other rapalogs, pan-mTOR inhibitors, dual PI3K/mTOR inhibitors, which inhibit growth- and aging-promoting pathways.”


#4: Melatonin increases overall survival of prostate cancer patients with poor prognosis after combined hormone radiation treatment

Authors: Gennady M. Zharinov, Oleg A. Bogomolov, Irina V. Chepurnaya, Natalia Yu. Neklasova, and Vladimir N. Anisimov

Institutions: N.N. Petrov National Medical Research Center of Oncology

Quote: “The antitumor and immunomodulating activities of melatonin are widely known. These activities are based upon the multifactorial mechanism of action on various links of carcinogenesis. In the present paper, the long-term results of the clinical use of melatonin in the combined treatment of patients with prostate cancer of various risk groups were evaluated.”


#3: Scent test using Caenorhabditis elegans to screen for early-stage pancreatic cancer

Authors: Ayumu Asai, Masamitsu Konno, Miyuki Ozaki, Koichi Kawamoto, Ryota Chijimatsu, Nobuaki Kondo, Takaaki Hirotsu, and Hideshi Ishii

Institutions: Osaka University and Hirotsu Bio Science Inc.

Quote: “Although early detection and diagnosis are indispensable for improving the prognosis of patients with pancreatic cancer, both have yet to be achieved. Except for pancreatic cancer, other cancers have already been screened through scent tests using animals or microorganisms, including Caenorhabditis elegans.”


#2: Inflammatory responses and inflammation-associated diseases in organs

Authors: Linlin Chen, Huidan Deng, Hengmin Cui, Jing Fang, Zhicai Zuo, Junliang Deng, Yinglun, Xun Wang, and Ling Zhao

Institution: Sichuan Agricultural University

Quote: “Here, we review inflammatory responses within organs, focusing on the etiology of inflammation, inflammatory response mechanisms, resolution of inflammation, and organ-specific inflammatory responses.”


#1: The goal of geroscience is life extension

Author: Mikhail V. Blagosklonny

Institution: Roswell Park Cancer Institute

Quote: “Although numerous drugs seemingly extend healthspan in mice, only a few extend lifespan in mice and only one does it consistently. Some of them, alone or in combination, can be used in humans, without further clinical trials.”


Click here to read the latest papers published by Oncotarget in Volume 13.

ONCOTARGET VIDEOS: YouTube | LabTube | Oncotarget.com

Oncotarget is a unique platform designed to house scientific studies in a journal format that is available for anyone to read without a paywall making access more difficult. This means information that has the potential to benefit our societies from the inside out can be shared with friends, neighbors, colleagues, and other researchers, far and wide.

For media inquiries, please contact media@impactjournals.com.

Scientific Integrity

Open-Access Oncotarget Shifts to Continuous Publishing

As of 2022, the peer-reviewed and open-access journal Oncotarget has shifted to continuous publishing.

As of January 1, 2022, Oncotarget has shifted to a continuous publishing model. Papers will now be published continuously within yearly volumes in their final and complete form.
Listen to an audio version of this announcement

BUFFALO, NY, January 6, 2022 – Since its inception in 2010, Oncotarget has operated as a traditional-style journal that publishes online page numbered issues of peer-reviewed papers. Final paginated issues were then released in their permanent form to Pubmed.

As of 2022, Oncotarget has shifted to a continuous publishing model. Papers will now be published continuously within yearly volumes in their final and complete form. This means that qualified, rigorously peer-reviewed articles will be published online as soon as they are in their fully formatted and final version of record. With continuous publication, articles posted online are complete with citation details and are available in full text html and PDF formats. Additionally, research papers will appear on PubMed quickly—just days after the papers are published by Oncotarget.

Why the change? In an increasingly digital world, the open-access continuous publishing model is ideal for authors, researchers and overall readership. Continuous publishing allows for faster research dissemination, citation and clinical application, compared to a traditional format.

Oncotarget is committed to doing our part to ensure that research is available to the biomedical community as quickly as possible, while maintaining high standards of quality.

To learn more about Oncotarget, visit Oncotarget.com or connect with us on social media:

About Impact Journals (Oncotarget’s publisher):

Impact Journals is a New York-based open-access publisher with a mission to provide scientists with the opportunity to share their exceptional discoveries, and to present vital findings from different fields of biomedical science. Our goal is life without disease.

For media inquiries, please contact media@impactjournals.com.

Chemical in Sunscreen Promotes Breast Cancer in Diet-Dependent Manner

The bioactivity of oxybenzone—a harmful chemical often found in sunscreens—was examined within mouse models of breast cancer in high- and low-fat dietary contexts.

sunscreen
Listen to an audio version of this article

Oxybenzone (benzophenone-3; BP-3) is a toxic endocrine-disrupting chemical (EDC). Alarmingly, this chemical has been identified as a common ingredient in some brands of sunscreen. Oxybenzone can often be found in humanshousehold dustfish and, due to its widespread human use, the water environment—causing harm to coral reefs and other murine life. Previous studies have shown that environmental toxins and estrogenic chemicals have emerged as potential culprits in the promotion of breast cancer. Furthermore, oxybenzone has been known to have estrogenic and anti-estrogenic properties.

“Although BP-3 has a very short half-life, its presence is widespread in human urine [9], in as much as 98% of the general U.S. population [13].”

Researchers from the Breast Cancer and the Environment Research Program at Michigan State University studied the diet-dependent effects of oxybenzone in mouse models of mammary tumorigenesis during puberty and adulthood. Their paper was published by Oncotarget in 2020, and entitled, “Benzophenone-3 promotion of mammary tumorigenesis is diet-dependent.” 

“We [previously] demonstrated enhancement of mammary tumorigenesis by a diet high in saturated animal fat (HFD) [58]. Thus, examination of the activity of EDCs in a dietary context may provide additional insight into the potential role of EDCs in promoting breast cancer.”

The Study

In the current study, the team employed the Trp53null transplantation of a basal-like breast cancer mouse model. The researchers previously demonstrated that proliferative, inflammatory and angiogenic activity in the mammary gland can be modulated by estrogen and a high-fat diet (HFD). Therefore, both pubertal and adult mice were placed on either low- or high-fat diets. After one week, study mice were ovariectomized, given time for recovery and the natural dissipation of endogenous hormones, and then treated for five days with either saline (control) or 17β-estradiol (E2). 

Next, the estrogenic or anti-estrogenic effects of oxybenzone were examined in these mice under three dietary conditions: mice fed a life-long low-fat diet (LFD), mice fed a LFD during puberty and then a HFD in adulthood (LFD-HFD) and finally, mice fed a HFD during puberty and then a LFD in adulthood (HFD-LFD). Mice in LFD-HFD and HFD-LFD groups were fed their initial diet from three to 10 weeks of age, and were then switched to the alternative diet. Half of these mice were injected with oxybenzone and the other half (control) were injected with saline.

“We found that BP-3 had complex effects that were dependent upon dietary regimen and tumor histopathology.”

Results

Consistent with their previous studies, the researchers found that most of the tumors developed were epithelial in histological composition, and few were spindle cell carcinomas. They found that oxybenzone reduced the tumorigenesis of epithelial tumors in LFD mice. The LFD-HFD combination resulted in more spindle cell tumors compared to the life-long LFD mice. Oxybenzone treatment increased the tumorigenesis of epithelial tumors in mice fed the LFD-HFD. 

“Kaplan-Meier analysis revealed that BP-3 reduced tumorigenesis of epithelial tumors in mice fed LFD (Figure 3A). On the other hand, consistent with the increased proportion of epithelial tumors, BP-3 was promotional for epithelial tumorigenesis in mice fed LFD-HFD (Figure 3C), while reducing spindle cell tumorigenesis (Figure 3D).” 

Researchers saw that proliferation was increased by oxybenzone treatment most significantly in the mammary glands of 26-week-old HFD mice. Curiously, oxybenzone treatment increased the number of lesions only in mice fed the HFD-LFD. The researchers note that, in this study and others, a “pubertal window of susceptibility” was observed, reinforcing the important notion that puberty is a highly sensitive window of time for poor diets and adverse exposures to environmental toxins. Ultimately, the team found that oxybenzone enhances estrogen-stimulated breast cancer cell proliferation in pubertal mice fed a HFD.

“Benzophenone-3 increased tumor cell proliferation, decreased tumor cell apoptosis, and increased tumor vascularity dependent on specific dietary regimen and tumor histopathology.”

Conclusion

Collectively, the researchers’ findings suggest that exposure to oxybenzone has adverse consequences in mammary tumorigenesis. The degree of severity appeared to be modulated differently among the three dietary regimens studied. Mice fed a HFD in adulthood experienced a decrease in tumor cell apoptosis and an increase in tumor vascularity and tumor cell proliferation. They note that there is future value in exploring the differences between pubertal and adult exposure to oxybenzone on a constant diet regimen.

“This points to a need for further studies of benzophenone-3 in both animal models and humans as a potential breast cancer risk factor, as well as a more general need to evaluate endocrine disrupting chemicals in varying dietary contexts.”

Click here to read the full scientific study, published by Oncotarget.

YOU MAY ALSO LIKE: More Oncotarget Videos on LabTube

Oncotarget is a unique platform designed to house scientific studies in a journal format that is available for anyone to read without a paywall making access more difficult. This means information that has the potential to benefit our societies from the inside out can be shared with friends, neighbors, colleagues, and other researchers, far and wide.

For media inquiries, please contact media@impactjournals.com.

Scientific Integrity